Process and Properties of Ultrafine Silver-Coated Electrolytic Copper Powders

2017 ◽  
Vol 898 ◽  
pp. 898-907
Author(s):  
De Rong Meng ◽  
Li Min Wang ◽  
Jing Guo Zhang ◽  
Qiang Hu ◽  
Li Gen Wang ◽  
...  

The ultrafine electrolytic copper powders were coated by silver using a combination of displacement reaction and reduction method, and the bimetallic core-shell powders with a 10wt.% addition of silver were obtained. The effects of concentration of complexing-dispersing agent and reducing agent on the silver coating layer were studied. The morphology, composition and structure of bimetallic core-shell powders were characterized by scanning electron microscopy, X-ray diffraction and energy dispersive spectroscopy. The oxidation resistance and electric conductivity of the coated powders were also investigated. The experimental results showed that the powders have a better oxidation resistance and higher conductivity using the complexing-dispersing agent of 10g/L EDTA-2Na and the reducing agent n of 30 g/L formaldehyde.

2010 ◽  
Vol 658 ◽  
pp. 173-176
Author(s):  
Yong Hui Song ◽  
Ting Su ◽  
Yong Yang ◽  
Xin Zhe Lan ◽  
Huan Zhan

Hollow and solid spherical silver-coated copper powders with size of 1μm were facilely prepared by the reduction of silver nitrate in the polyvinyl pyrrolidone (PVP) dispersed copper hydrosol solution at room temperature in the presence of hydrazine hydrate. Scanning electron microscopy and X-ray diffraction were conducted to investigate the formation process of silver-coated copper core-shell particles. The results showed that the absorption and deposition of the Ag nuclei initially occurred at the active sites on the core surfaces as seeds which urged the further deposition of silver species to form sprinkled-structure core-shell particles. During the growth of the silver shell, the dissolution of copper core would result in the formation of hollow spherical particles, while the hydrazine hydrate would help to generate the solid spherical silver-coated copper powders.


2002 ◽  
Vol 16 (06n07) ◽  
pp. 1047-1051
Author(s):  
JIANPING MA ◽  
ZHIMING CHEN ◽  
GANG LU ◽  
MINGBIN YU ◽  
LIANMAO HANG ◽  
...  

Intense photoluminescence (PL) has been observed at room temperature from the polycrystalline SiC samples prepared from carbon-saturated Si melt at a temperature ranging from 1500 to 1650°C. Composition and structure of the samples have been confirmed by means of X-ray photoelectron spectroscopy, X-ray diffraction and scanning electron microscopy. PL measurements with 325 nm UV light excitation revealed that the room temperature PL spectrum of the samples consists of 3 luminescent bands, the peak energies of which are 2.38 eV, 2.77 eV and 3.06 eV, respectively. The 2.38 eV band is much stronger than the others. It is suggested that some extrinsic PL mechanisms associated with defect or interface states would be responsible to the intensive PL observed at room temperature.


2011 ◽  
Vol 189-193 ◽  
pp. 743-746
Author(s):  
Jian Feng Li ◽  
Li Zhi Guo ◽  
Guo Qing Li

This article summarized depositing craft of the superficial coatings (Ni-Co-Cr-Al-Y-Si) on the Ti60 alloy (Ti-6.5Al-4.2Sn-4Zr-0.6Si) with arc ion plating technology and the oxidation behavior under 600~750 . The X-ray diffraction (XRD) and the scanning electronic microscope (SEM) were used to analyze the surface appearance, the structure and the ingredient conducts of non-coating Ti60 alloy. The contrast shows that the coatings have good protection to Ti60 alloy. The result indicated that the coating has the good oxidation resistance performance under 600°C , 650°C and 750°C . Coated Ti60 alloy oxidation resistance is markly improved. The circulation oxidation dynamics curve basically conforms to the parabola rule.


1997 ◽  
Vol 496 ◽  
Author(s):  
Yair Ein-Eli ◽  
W. F. Howard ◽  
Sharon H. Lu ◽  
Sanjeev Mukerjee ◽  
James McBreen ◽  
...  

ABSTRACTA series of electroactive spinel compounds, LiMn2-xCuxO4 (0.1 ≤ x ≤ 0.5) has been studied by crystallographic, spectroscopie and electrochemical methods and by electron-microscopy. These LiMn2-xCuxO4 spinels are nearly identical in structure to cubic LiMn2O4 and successfully undergo reversible Li intercalation. The electrochemical data show slight shifts to higher voltage for the delithiation reaction that normally occurs at 4.1 V in standard Li1−xMn2O4 electrodes (1 ≥ x ≥ 0) corresponding to the oxidation of Mn3+ to Mn4+. The data also show a remarkable reversible electrochemical process at 4.9 V which is attributed to the oxidation of Cu2+ to Cu3+. The inclusion of Cu in the spinel structure enhances the electrochemical stability of these materials upon cycling. The initial capacity of LiMn2-xCuxO4 spinels decreases with increasing x from 130 mAh/g in LiMn2O4 (x=0) to 70 mAh/g in “LiMn1.5Cu0.5O4”(x=0.5). Although the powder X-ray diffraction pattern of “LiMn1.5Cu0.5 O4” shows a single-phase spinel product, neutron diffraction data show a small, but significant quantity of an impurity phase, the composition and structure of which could not be identified. X-ray absorption spectroscopy was used to gather information about the oxidation states of the manganese and copper ions. The composition of the spinel component in the LiMn1.5Cu0.5O4 was determined from X-ray diffraction and XANES data to be Li1.01Mn1.67Cu0.32O4 suggesting, to a best approximation, that the impurity in the sample was a lithium-copper-oxide phase.


2008 ◽  
Vol 595-598 ◽  
pp. 897-905
Author(s):  
Eric Caudron ◽  
Régis Cueff ◽  
Christophe Issartel ◽  
N. Karimi ◽  
Frédéric Riffard ◽  
...  

Manganese addition and subsequent yttrium implantation effects on extra low carbon steel were studied by Rutherford Backscattering Spectrometry (RBS), Reflection High Energy Electron Diffraction (RHEED), X-ray Diffraction (XRD) and Glancing Angle X-ray Diffraction (GAXRD). Thermogravimetry and in situ X-Ray Diffraction at 700°C and PO2=0.04 Pa for 24h were used to determine the manganese alloying addition and subsequent yttrium implantation effects on reference steel oxidation resistance at high temperatures. This study clearly shows the combined effect of manganese alloying addition and subsequent yttrium implantation which promotes the formation of several yttrium mixed oxides seem to be responsible for the improved reference steel oxidation resistance at high temperatures.


2011 ◽  
Vol 306-307 ◽  
pp. 410-415
Author(s):  
Li Sun ◽  
Fu Tian Liu ◽  
Qi Hui Jiang ◽  
Xiu Xiu Chen ◽  
Ping Yang

Core/shell type nanoparticles with an average diameter of 20nm were synthesized by chemical precipitation method. Firstly, Monodisperse Fe3O4 nanoparticles were synthesized by solvethermal method. FeSO4ž7H2O and NaBH4 were respectively dissolved in distilled water, then moderated Fe3O4 particles and surfactant(PVP) were ultrasonic dispersed into the FeSO4ž7H2O solution. The resulting solution was stirred 2 h at room temperature. Fe could be deposited on the surface of monodispersed Fe3O4 nanoparticles to form core-shell particles. The particles were characterized by using various experimental techniques, such as transmission electron microscopy (TEM), X-ray diffraction (XRD), AGM and DTA. The results suggest that the saturation magnetization of the nanocomposites is 100 emu/g. The composition of the samples show monodisperse and the sides of the core/shell nanoparticles are 20-30nm. It is noted that the formation of Fe3O4/Fe nanocomposites magnetite nanoparticles possess superparamagnetic property.


2012 ◽  
Vol 45 (5) ◽  
pp. 906-913 ◽  
Author(s):  
Herve Palancher ◽  
Anne Bonnin ◽  
Veijo Honkimäki ◽  
Heikki Suhonen ◽  
Peter Cloetens ◽  
...  

This article describes a single-shot methodology to derive an average coating thickness in multi-particle core–shell systems exhibiting high X-ray absorption. Powder composed of U–Mo alloy particles surrounded by a micrometre-thick UO2protective layer has been used as a test sample. Combining high-energy X-ray diffraction and laser granulometry, the average shell thickness could be accurately characterized. These results have been validated by additional measurements on single particles by two techniques: X-ray nanotomography and high-energy X-ray diffraction. The presented single-shot approach gives rise to many potential applications on core–shell systems and in particular on as-fabricated heterogeneous nuclear fuels.


2019 ◽  
Vol 5 (4) ◽  
pp. 61 ◽  
Author(s):  
Raja ◽  
Esquenazi ◽  
Jones ◽  
Li ◽  
Brinson ◽  
...  

In this work, as-received HiPCO single walled carbon nanotubes (SWCNTs) are incorporated in a controllable manner at various concentrations into Cu-SWCNT composites via electroless plating, by varying the related reaction times, with polyethylene glycol (PEG) used as a dispersing agent. The resultant samples were analyzed using scanning electron microscopy (SEM) for morphology assessment, energy dispersive X-ray analysis (EDX) and X-ray photoelectron spectroscopy (XPS) for elemental analysis, X-ray diffraction (XRD) for the assessment of crystal phase identification, and Raman spectroscopy for the confirmation of the presence of the incorporated SWCNTs. The Cu-SWCNT composites were found to contain carbon, catalytic iron (associated with the raw, as-received SWCNTs), oxygen, and copper; the latter was found to be inversely proportional to carbon and iron contents. The oxygen (associated with both the SWCNT defect sites and oxidized copper surfaces) remained more or less constant regardless of the proportion of SWCNTs in the composites. The Raman IG:ID ratio remains within the experimental error constant, indicating that the electroless deposition does not have a deleterious effect on the SWCNTs. At short deposition times, SEM revealed a relatively dense structure comprising a distinctive fibrous morphology, suggestive of an underlying SWCNT substrate coated with copper; however, with increasing deposition, a more porous morphology is observed. The size of the granular particles increases up until 10 min of reaction, after which time it remains unchanged.


2015 ◽  
Vol 103 (6) ◽  
Author(s):  
Mamdoh R. Mahmoud ◽  
Mohamed A. Soliman ◽  
Karam F. Allan

AbstractAdsorption behavior of samarium(III) radionuclides from aqueous solutions onto a novel polyacrylonitrile coated with sodium dodecyl sulfate (PAN@SDS), prepared by gamma radiation-induced polymerization, was studied in this work. The developed polymeric adsorbent was characterized by FT-IR, X-ray diffraction and N


2021 ◽  
Vol 19 (10) ◽  
pp. 82-88
Author(s):  
Duaa A. Uamran ◽  
Qasim Hassan Ubaid ◽  
Hammad R. Humud

Core-shell nanoparticles (SiO2/Ag) were manufactured by using a two-step process: Electric detonation of Ag. Wire in colloidal solution particles then by using laser pulses, nanoparticles are released. The structural features of these nanoparticles were checked by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The (XRD) study showed the progressive coverage of SiO2/Ag by nanoparticles according to the energies of the laser pulse. Measurements of morphology and EDX confirmed the Core/shell structure with particle size at the nano level. It confirmed that preliminary analysis consists of a SiO2 core and an Ag shell from FESEM. The surface of the microscopic balls (SiO2) has been covered completely and homogeneously with Ag nanoparticles, Moreover, Ultraviolet-Visible, and by optical absorption spectroscopy, the Nanoparticles with core crust SiO2/Ag showed excellent photocatalytic activities at various concentrations and laser pulse energy.


Sign in / Sign up

Export Citation Format

Share Document