Wear Behavior of Plasma Processed LM6 Alloy

2020 ◽  
Vol 978 ◽  
pp. 140-144
Author(s):  
Jagadish Parida ◽  
Subash Chandra Mishra ◽  
Suresh Chandra Pattnaik

In the current work, wear behavior of plasma processed LM6 alloy is investigated. LM6 alloy was prepared by plasma technique. The samples were aged at 350°C & 450°C for 2 hours followed by water quenching. A comparative study of the metallographic structure and properties viz. hardness, density and wear of the non-heat and heat treated alloy samples were carried out. A very fine lamellar structure is observed in case of 450°C heat treated samples than that of sample heat treated at 350°C and non-heat treated samples. Highest hardness value of 68.11 VHN is observed with the sample heat treated at 450°C. Density is found to be the lowest in non-heat treated samples and it increases with increasing heat treatment temperature. Wear experiments were carried on a pin-on-disc set up (of Ducom make), varying applied loads (between 10-40Newton and varying sliding speed (from 0.94 m. s-1 to 2. 83m.s-1). Maximum wear resistance is observed with the specimen heat treated at 450°C.

2017 ◽  
Vol 24 (Supp01) ◽  
pp. 1850014 ◽  
Author(s):  
ARKADEB MUKHOPADHYAY ◽  
TAPAN KUMAR BARMAN ◽  
PRASANTA SAHOO

The present work investigates the effects of heat treatment on friction and wear behavior of electroless Ni–B coatings at elevated temperatures. Coating is deposited on AISI 1040 steel specimens and subjected to heat treatments at 350[Formula: see text]C, 400[Formula: see text]C and 450[Formula: see text]C. Coating characterization is done using scanning electron microscope, energy dispersive X-Ray analysis and X-Ray diffraction analysis. Improvement in microhardness is observed for the heat treated deposits. Further, the effect of heat treatment on the tribological behavior of the coatings at room temperature, 100[Formula: see text]C, 300[Formula: see text]C and 500[Formula: see text]C are analyzed on a pin-on-disc setup. Heat treatment at 350[Formula: see text]C causes a significant improvement in the tribological behavior at elevated temperatures. Higher heat treatment temperatures cause deterioration in the wear resistance and coefficient of friction. The wear mechanism at 100[Formula: see text]C is observed to be predominantly adhesive along with abrasion. While at 300[Formula: see text]C, abrasive wear is seen to be the governing wear phenomenon. Formation of mechanically mixed layers is noticed at both the test temperatures of 100[Formula: see text]C and 300[Formula: see text]C for the coatings heat treated at 400[Formula: see text]C and 450[Formula: see text]C test temperature. The predominant wear mechanisms at 500[Formula: see text]C are abrasive and fatigue for as-deposited and heat treated coatings, respectively.


2014 ◽  
Vol 66 (4) ◽  
pp. 545-554 ◽  
Author(s):  
C. Velmurugan ◽  
R. Subramanian ◽  
S.S. Ramakrishnan ◽  
S. Thirugnanam ◽  
T. Kannan ◽  
...  

Purpose – The purpose of this paper is to investigate the influence of most predominant heat-treatment parameters on the wear behavior of Al6061 hybrid composite reinforced with 10 weight per cent SiC and 2 weight per cent graphite particles. Design/methodology/approach – The aluminum hybrid composite was produced using stir casting process. Wear testing of heat-treated samples was carried out using a pin-on-disc apparatus. Experiments were conducted by applying design of experiments (DOE) technique. The experimental values were used for formulation of a mathematical model. The wear surfaces of composite specimens were analyzed using scanning electron microscope (SEM). Findings – The volume loss of heat-treated composite initially decreased with increasing aging duration. This was followed by the attainment of a minimum and then a reversal in the trend at longer aging times. SEM micrographs of the wear surfaces of the composite show that the wear mechanisms were abrasion, delamination and adhesion. Originality/value – In this paper, the hybrid composite was produced using stir casting route, and its wear properties after heat treatment were tested using pin-on-disc apparatus. It was found that heat treatment had a profound effect on the wear behaviour of the developed composite.


MRS Advances ◽  
2020 ◽  
Vol 5 (59-60) ◽  
pp. 3077-3089
Author(s):  
Alexeis Sánchez ◽  
Arnoldo Bedolla-Jacuinde ◽  
Francisco V. Guerra ◽  
I. Mejía

AbstractFrom the present study, vanadium additions up to 6.4% were added to a 14%Cr-3%C white iron, and the effect on the microstructure, hardness and abrasive wear were analysed. The experimental irons were melted in an open induction furnace and cast into sand moulds to obtain bars of 18, 25, and 37 mm thickness. The alloys were characterized by optical and electronic microscopy, and X-ray diffraction. Bulk hardness was measured in the as-cast conditions and after a destabilization heat treatment at 900°C for 45 min. Abrasive wear resistance tests were undertaken for the different irons according to the ASTM G65 standard in both as-cast and heat-treated conditions under a load of 60 N for 1500 m. The results show that, vanadium additions caused a decrease in the carbon content in the alloy and that some carbon is also consumed by forming primary vanadium carbides; thus, decreasing the eutectic M7C3 carbide volume fraction (CVF) from 30% for the base iron to 20% for the iron with 6.4%V;but overall CVF content (M7C3 + VC) is constant at 30%. Wear behaviour was better for the heat-treated alloys and mainly for the 6.4%V iron. Such a behaviour is discussed in terms of the CVF, the amount of vanadium carbides, the amount of martensite/austenite in matrix and the amount of secondary carbides precipitated during the destabilization heat treatment.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 643
Author(s):  
Xiaoyu Wu ◽  
Shufeng Xie ◽  
Kangwei Xu ◽  
Lei Huang ◽  
Daling Wei ◽  
...  

Burning loss of graphene in the high-temperature plasma-spraying process is a critical issue, significantly limiting the remarkable performance improvement in graphene reinforced ceramic coatings. Here, we reported an effective approach to enhance the graphene retention, and thus improve the performance of plasma-sprayed alumina/graphene nanoplatelets (Al2O3/GNPs) coatings by heat treatment of agglomerated Al2O3/GNPs powders. The effect of powder heat treatment on the microstructure, GNPs retention, and electrical conductivity of Al2O3/GNPs coatings were systematically investigated. The results indicated that, with the increase in the powder heat treatment temperature, the plasma-sprayed Al2O3/GNPs coatings exhibited decreased porosity and improved adhesive strength. Thermogravimetric analysis and Raman spectra results indicated that increased GNPs retention from 12.9% to 28.4%, and further to 37.4%, as well as decreased structural defects, were obtained for the AG, AG850, and AG1280 coatings, respectively, which were fabricated by using AG powders without heat treatment, powders heat-treated at 850 °C, and powders heat-treated at 1280 °C. Moreover, the electrical conductivities of AG, AG850, and AG1280 coatings exhibited 3 orders, 4 orders, and 7 orders of magnitude higher than that of Al2O3 coating, respectively. Powder heat treatment is considered to increase the melting degree of agglomerated alumina particles, eventually leaving less thermal energy for GNPs to burn; thus, a high retention amount and structural integrity of GNPs and significantly enhanced electrical conductivity were achieved for the plasma-sprayed Al2O3/GNPs coatings.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1264
Author(s):  
Teng-Chun Yang ◽  
Tung-Lin Wu ◽  
Chin-Hao Yeh

The influence of heat treatment on the physico-mechanical properties, water resistance, and creep behavior of moso bamboo (Phyllostachys pubescens) was determined in this study. The results revealed that the density, moisture content, and flexural properties showed negative relationships with the heat treatment temperature, while an improvement in the dimensional stability (anti-swelling efficiency and anti-water absorption efficiency) of heat-treated samples was observed during water absorption tests. Additionally, the creep master curves of the untreated and heat-treated samples were successfully constructed using the stepped isostress method (SSM) at a series of elevated stresses. Furthermore, the SSM-predicted creep compliance curves fit well with the 90-day full-scale experimental data. When the heat treatment temperature increased to 180 °C, the degradation ratio of the creep resistance (rd) significantly increased over all periods. However, the rd of the tested bamboo decreased as the heat treatment temperature increased up to 220 °C.


2013 ◽  
Vol 747-748 ◽  
pp. 497-501
Author(s):  
Na Liu ◽  
Zhou Li ◽  
Guo Qing Zhang ◽  
Hua Yuan ◽  
Wen Yong Xu ◽  
...  

Powder metallurgical TiAl alloy was fabricated by gas atomization powders, and the effect of heat treatment temperature on the microstructure evolution and room tensile properties of PM TiAl alloy was investigated. The uniform fine duplex microstructure was formed in PM TiAl based alloy after being heat treated at 1250/2h followed by furnace cooling (FC)+ 900/6h (FC). When the first step heat treatment temperature was improved to 1360/1h, the near lamellar microstructure was achieved. The ductility of the alloy after heat treatment improved markedly to 1.2% and 0.6%, but the tensile strength decreased to 570MPa and 600MPa compared to 655MPa of as-HIP TiAl alloy. Post heat treatment at the higher temperature in the alpha plus gamma field would regenerate thermally induced porosity (TIP).


Carbon ◽  
2007 ◽  
Vol 45 (6) ◽  
pp. 1200-1211 ◽  
Author(s):  
Changjun Zhou ◽  
William S. Kinman ◽  
Paul J. McGinn

2007 ◽  
Vol 344 ◽  
pp. 383-390 ◽  
Author(s):  
Marion Merklein ◽  
Uwe Vogt

Tailored Heat Treated Blanks (THTB) are blanks that exhibit locally different strength specifically optimized for the succeeding forming process. The strength distribution is set by a local, short-term heat treatment modifying the mechanical properties of the material. Hence, THTB allow enhancing forming limits significantly leading to shorter and more robust manufacture process chains. In order to qualify the use of THTB under quasi series conditions, the interdependencies of the blank’s local heat treatment and the entire process chain of the car body manufacture have to be analyzed. In this respect, the impact of a short-term heat treatment on the mechanical properties of AA6181PX, a commonly used aluminum alloy in today’s car bodies, was studied. Also the influence of a short-term heat treatment on the coil lubricant, usually already applied by the material supplier, was given a closer look. Based on these experiments process restrictions for the application of THTB in an industrial automotive environment were derived and a process window for the THTB design was set up. In conclusion, strategies were defined how to enhance the found process boundaries leading to a more robust process window.


2016 ◽  
Vol 97 ◽  
pp. 141-146 ◽  
Author(s):  
Taywin Buasri ◽  
Hyunbo Shim ◽  
Masaki Tahara ◽  
Tomonari Inamura ◽  
Kenji Goto ◽  
...  

The effect of heat treatment temperature from 1173 K to 1373 K for 3.6 ks on mechanical and superelastic properties of an Ni-free Au-51Ti-18Co alloy (mol%) was investigated. The stress for inducing martensitic transformation (SIMT) and the critical stress for slip deformation (CSS) slightly decrease with increasing the heat–treatment temperature. Regardless of heat–treatment temperature, good superelasticity was definitely recognized with the maximum shape recovery ratio up to 95 % and 4 % superelastic shape recovery strain. As the mentioned reasons, the Au-51Ti-18Co alloy is promising for practical biomedical applications.


2015 ◽  
Vol 1113 ◽  
pp. 56-61
Author(s):  
Nor Azrina Resali ◽  
Koay Mei Hyie ◽  
M.N. Berhan ◽  
C.M. Mardziah

In this research, heat treatment is the final finishing process applied on nanocrystalline CoNiFe to improve microstructure for good hardness property. Nanocrystalline CoNiFe has been synthesized using the electrodeposition method. This study investigated the effect of heat treatment at 500°C, 600°C, 700°C and 800°C on electrodeposited nanocrystalline CoNiFe. The heat treatment process was performed in the tube furnace with flowing Argon gas. By changing the heat treatment temperature, physical properties such as phase and crystallographic structure, surface morphology, grain size and hardness of nanocrystalline CoNiFe was studied. The nanocrystalline CoNiFe phase revealed the Face Centered Cubic (FCC) and Body Centered Cubic (BCC) crystal structure. FESEM micrographs showed that the grain sizes of the coatings were in the range of 78.76 nm to 132 nm. Dendrite shape was found in the microstructure of nanocrystalline CoNiFe. The nanocrystalline CoNiFe prepared in heat treatment temperature of 700°C, achieved the highest hardness of 449 HVN. The surface roughness of nanocrystalline CoNiFe heated at 700°C was found to be smaller than other temperatures.


Sign in / Sign up

Export Citation Format

Share Document