Three-Dimensional Simulation of the Influences of Operational Parameters on Stability of Formation-Cement Sheath-Casing Combination

2020 ◽  
Vol 980 ◽  
pp. 525-546
Author(s):  
Yong Wen Yuan ◽  
Yan Jun Cheng ◽  
Jin Xin Zhu ◽  
Liu Yi Li

At present, most of the studies of the stability of the formation-cement sheath-casing combination have been mainly based on the plane, and the three-dimensional model established is only one example. There is no systematic study of the influence of physical parameters and process parameters on the stability of the combined body under the three-dimensional model and the action of triaxial crustal stress. Through the establishment of three-dimensional formation-cement sheath-casing linear elastic combination model, we can study the influence of operational parameters (cement sheath pressure, casing cross section pressure, inner casing pressure, ellipticity of borehole, centrality of casing, thickness of cement sheath) by the two interfaces’ Von Mises stress and the total displacement of the combination body. It is pointed out that the pressure of cement sheath, and casing cross section pressure have no effect on the stability of formation, cement sheath and casing; The higher the ellipticity of the borehole, the eccentricity of the casing (position 1, 2) and the thickness of the cement sheath, the higher the stability of the second interface of the cementing; The higher the inner casing pressure and the eccentricity of the casing(position 3), the lower the stability of the second interface of the cementing; The higher the eccentricity of the casing (position 2,3) and the thickness of the cement sheath, the higher the stability of the first interface of the cementing; The higher the inner casing pressure, the eccentricity of the casing (position 1) and the ellipticity of the borehole, the lower the stability of the first interface of the cementing; The higher the eccentricity of the casing (position 2,3) and thickness of the cement sheath, the higher the stability of the casing; The higher the inner casing pressure, the ellipticity of the borehole and the eccentricity of the casing(position 1), the lower the stability of the casing. Through this study, according to the formation stress, the formation physical parameters (elastic modulus, Poisson's ratio, density), optimize the operational parameters, ensure the long-term integrity of the combination.

2012 ◽  
Vol 591-593 ◽  
pp. 259-262
Author(s):  
Yan Sheng Li ◽  
Yan Heng Zhang ◽  
Han Xu Sun ◽  
Hai Yang Dong ◽  
Shun Li Zhao

The tool falling and vibration faults often occur in the process of tool changing, In order to improve the stability of the tools on automatic tool changer, a new structure of the manipulator is presented. The new manipulator contains two-point locking instead of the original one-point locking, and the tools can be clamped more tightly. When the old manipulator is slotting the tool, the forces are analyzed, and the working load and parameters is determined by calculating and analyzing the output curve of manipulator. The three-dimensional model is built in ADMS, and the validity of the new designed manipulator is verified by the simulation in a limit state. The simulation result shows that the new manipulator can increase the ability of tool clamping effectively.


2006 ◽  
Vol 526 ◽  
pp. 193-198 ◽  
Author(s):  
Rodrigo Luri ◽  
C.J. Luis-Pérez

In this work, the strain field attained by using a severe plastic deformation (SPD) process called equal channel angular extrusion (ECAE) is studied by the finite element method (FEM). The three-dimensional model with circular section includes shear friction between the part and the die, the material strain hardening behaviour and a rigid-deformable contact between the billet and the die. In the ECAE process the part is extruded through two channels with similar diameter that intersect at an angle. When the extrusion process has been performed, the processed material remains it cross section, so there is not any geometric limitation to achieve the desired plastic strain. There are different ways of processing the material by using the ECAE process; those ways of processing are called routes. In this work two passages of route C have been simulated. Using route C means that the billet has been rotated 180º between each passage. Deformations imparted to the processed material have been calculated and a comparison with experimental results has been carried out.


Author(s):  
Yilin Zhang ◽  
Shanfang Huang

Two kinds of three-dimensional model are built to simulate the gas entrainment process through a small break in the horizontal coolant pipe at the bottom of the stratified flow. The results were compared with the two-dimensional simulation results and the experimental data. In terms of the two-phase distribution, the simulation results agree well with the experimental data and show much superiority compared with the two-dimensional model. The results verify the reliability of model building, condition setting and calculating method qualitatively and quantitatively. In general, after gas entrainment, the average velocity over cross section increases obviously, but the mass flow rate decreases contrarily. This is because that void fraction meanwhile reduces the fluid density. In addition, it is found that the larger the void fraction of vapor is, the higher the average discharge velocity of the fracture cross-section fluid is. Besides, with the larger internal and external pressure difference, the gas volume fraction and the flow velocity in the break increase, resulting in the mass flow rate increasing along with them. However, since the critical height increases as well, the total loss amount of liquid in the stable effluent stage decreases, and the time before entrainment becomes shorter.


2015 ◽  
Vol 713-715 ◽  
pp. 95-98
Author(s):  
Ai Hua Li ◽  
Hong Yu Liu

Cold shearing machine is the machine equipment often used in metallurgical industry to shear head, tail and fixed length of rolled piece. The shearing movement of cold shearing machine can be realized by crankshaft driving link rod with relative up-and-down motion. Load on crankshaft is comparatively big. In this paper, cold shearing machine crankshaft was taken as an example. The three dimensional model of relative cold shearing machine crankshaft was constructed by SolidWorks software. Strength finite element analyses on relative model were made by static analysis module attached to SolidWorks software under maximum load working conditions. The overall displacement distribution pictures and overall Von Mises stress distribution pictures of cold shearing machine crankshaft under relative load working conditions were obtained. This research provides important reference base for the design and reform of cold shearing machine crankshaft.


2021 ◽  
Author(s):  
Vidal Félix Navarro Torres ◽  
Rodrigo Dockendorff ◽  
Juan Manuel Girao Sotomayor ◽  
Cristian Castro ◽  
Aristotelina Ferreira da Silva

Abstract It has historically been frequent among geotechnical practitioners, that the stability analysis of the slopes of an open pit is performed using a two dimensional section representing the highest and steepest walls within a certain geological setting. However, the literature shows that to predict rupture events in an open pit, a three-dimensional analysis would better represent the actual conditions, as the spatial distribution of the lithology and the structural features play an important role when defining the stability of the slopes. This paper presents the case study of an open it located in Brazil, which experienced instabilities between the years 2001-2019. An evaluation of the behavior of the open pit was performed by calibrating the strength parameters to represent the best documented rupture events. The three-dimensional model was made using the FLAC3D software. The results show that there is a good correlation between the results of the model and the reports of past instabilities. Finally, recommendations are presented for the inter-ramp angles for each lithology based on the calibrated stability analyzes performed. This work seeks to contribute to the knowledge in evaluation techniques for the three-dimensional behavior of open pits.


2014 ◽  
Vol 575 ◽  
pp. 329-336
Author(s):  
Zhi Feng Liu ◽  
Bo Hua Zhang

The problem of variable cross-section beam carrying a moving heavy load is investigated. UG software is used to build a three-dimensional model of the beam. The finite difference method and finite element method are used static analysis for the variable cross-section beam carrying a moving heavy load. The static deformation of the beam guide surface is obtained. Comparing the data of the two method, the feasibility of the method is verified. This paper give a guide surface load curve research method of variable cross-section beam carrying a moving heavy load.


1995 ◽  
Vol 117 (4) ◽  
pp. 696-705 ◽  
Author(s):  
Robert R. Hwang ◽  
T. P. Chiang

In this study, an investigation using a three-dimensional numerical model, which treats conservation of mass, momentum, and salinity simultaneously, was carried out to study the character of a vertical forced plume in a uniform cross-stream of stably linear stratified environment. A k-ε turbulence model was used to simulate the turbulent phenomena and close the solving problem. The performance of the three-dimensional model is evaluated by comparison of the numerical results with some available experimental measurements. Results indicate that the numerical computation simulates satisfactorily the plume behavior in a stratified crossflow. The secondary vortex pairs in the cross section induced by the primary one change as the plume flows downstream. This denotes the transformation of entrainment mechanism in stratified crossflow.


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Xiao-Fei Jin ◽  
Shu-Ting Liang ◽  
Xiao-Jun Zhu

Stability of slurry trenches is an important issue during the construction of the groundwater cutoff walls and diaphragm walls, and thus gradually draws attention. In this paper, a theoretical method for a three-dimensional trench model with an inclined ground was proposed. Based on the Coulomb-type force equilibrium, a safety factor assessing the stability was derived. The results showed that the existing two-dimensional model was conservative compared to the present three-dimensional model; concretely, a greater inclined angle of the inclined ground and trench length decreased the safety factor. This work could be used to assess the trench stability for both 2D and 3D cases with inclined ground surfaces.


1998 ◽  
Vol 29 (3) ◽  
pp. 149-178 ◽  
Author(s):  
Heidi Christiansen Barlebo ◽  
Mary C. Hill ◽  
Dan Rosbjerg ◽  
Karsten Høgh Jensen

A three-dimensional inverse groundwater flow and transport model that fits hydraulic-head and concentration data simultaneously using nonlinear regression is presented and applied to a layered sand and silt groundwater system beneath the Grindsted Landfill in Denmark. The aquifer is composed of rather homogeneous hydrogeologic layers. Two issues common to groundwater flow and transport modelling are investigated: 1) The accuracy of simulated concentrations in the case of calibration with head data alone; and 2) The advantages and disadvantages of using a two-dimensional cross-sectional model instead of a three-dimensional model to simulate contaminant transport when the source is at the land surface Results show that using only hydraulic heads in the nonlinear regression produces a simulated plume that is profoundly different from what is obtained in a calibration using both hydraulic-head and concentration data. The present study provides a well-documented example of the differences that can occur. Representing the system as a two-dimensional cross-section obviously omits some of the system dynamics. It was, however, possible to obtain a simulated plume cross-section that matched the actual plume cross-section well. The two-dimensional model execution times were about a seventh of those for the three-dimensional model, but some difficulties were encountered in representing the spatially variable source concentrations and less precise simulated concentrations were calculated by the two-dimensional model compared to the three-dimensional model. Summed up, the present study indicates that three-dimensional modelling using both hydraulic heads and concentrations in the calibration should be preferred in the considered type of transport studies.


2014 ◽  
Vol 533 ◽  
pp. 145-153
Author(s):  
Hong Zhi Zhang ◽  
Xuan Yu Sheng

In this paper, three-dimensional model of the flexible steel wire rope was established by using CABLE software in CATIA software. After defining the physical parameters of the steel wire rope, the dynamics analysis model of wire rope was established in motion workbench. Further fully model was assembled and simulated including cranes, tower, ground in motion workbench. Finally, we obtained hoisting structure of the trajectory curve, dynamic response, eccentric structure, flipping, etc., as well as interference with the surrounding objects.


Sign in / Sign up

Export Citation Format

Share Document