A Simple Synthesis of Silver Nanoparticles on Cellulose Paper for Antimicrobial Applications

2020 ◽  
Vol 990 ◽  
pp. 191-196
Author(s):  
Windri Handayani ◽  
Arie Listyarini ◽  
Yasman ◽  
Cuk Imawan

Silver nanoparticles are well known for their antimicrobial properties and have been widely used in medical and industrial applications to prevent the growth of microorganisms. The effectiveness of silver nanoparticles (AgNPs) as an antimicrobial material is influenced by their shape and size; the smaller the size, the more active the AgNPs. To prevent aggregation, the nanoparticles can be maintained by stabilizing agents. This study aims to synthesize silver nanoparticles in situ using cellulose paper and to evaluate their antimicrobial activity. For reduction of Ag+ ions were used propane-1,2-diol. The reduction was carried out at 60, 80, and 100o C to accelerate the reaction. The formation of silver nanoparticles can be seen from the change in paper color from white to yellow or brown. This result is confirmed by the occurrence of the absorption peak in the UV-Vis spectrum between 300-500 nm. The TEM image shows the size distribution of silver nanoparticles affected by their reduction temperature. Antimicrobial tests provide a clear zone from the bottom of the paper to the edge. The reaction temperature at 60o C showed the best antimicrobial activity with AgNPs averaging at 6 nm. This method can be applied to antimicrobial paper preparation with controlled size and distribution.

2016 ◽  
Vol 11 (1) ◽  
Author(s):  
Kaliyaperumal Logaranjan ◽  
Anasdass Jaculin Raiza ◽  
Subash C. B. Gopinath ◽  
Yeng Chen ◽  
Kannaiyan Pandian

RSC Advances ◽  
2016 ◽  
Vol 6 (28) ◽  
pp. 23816-23826 ◽  
Author(s):  
Jan Dolina ◽  
Lukáš Dvořák ◽  
Tomáš Lederer ◽  
Taťana Vacková ◽  
Šárka Mikmeková ◽  
...  

PU nanofibersin situdoped with silver nanoparticles were prepared using free-surface electrospinning and no post-treatment. Nanofibres with silver behenate exhibited homogenous morphology, strong antimicrobial properties and low silver leaching.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Musarat Amina ◽  
Nawal M. Al Musayeib ◽  
Nawal A. Alarfaj ◽  
Maha F. El-Tohamy ◽  
Hisham E. Orabi ◽  
...  

The present study focused on the prospect of fabricating a polymeric naturally extracted Moringa oleifera oil bionanocomposite film enriched with silver nanoparticles for antimicrobial activity. In this study, a standard concentration of Moringa oleifera oil (5-10 wt%) was used to fabricate a polymeric bionanocomposite film using polyvinyl chloride (PVC) enriched with silver nanoparticles. The active constituents of the extracted Moringa oleifera oil were verified using gas chromatography-mass spectrometry. Spectroscopic and microscopic techniques, including scanning electron microscopy, X-ray diffraction, and energy-dispersive X-ray analysis, were employed to characterize and study the surface morphology of the fabricated bionanocomposite film. The antimicrobial activity of the fabricated bionanocomposite film was investigated using different strains of bacteria and fungus. The results revealed well-oriented and excellently dispersed silver nanoparticles in the PVC-Moringa oleifera oil matrix. The bionanocomposite was able to inhibit the growth of Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Salmonella typhi, Pseudomonas aeruginosa, Shigella flexneri, and Candida albicans. The combination of nanoparticles with polymers is opening new routes for engineering fixable composites, which showed antimicrobial properties.


Cellulose ◽  
2014 ◽  
Vol 21 (6) ◽  
pp. 4557-4567 ◽  
Author(s):  
Jin Feng ◽  
Qingshan Shi ◽  
Wenru Li ◽  
Xiulin Shu ◽  
Aimei Chen ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1556
Author(s):  
Paulina Bednarczyk ◽  
Agnieszka Wróblewska ◽  
Agata Markowska-Szczupak ◽  
Paula Ossowicz-Rupniewska ◽  
Małgorzata Nowak ◽  
...  

This work presents studies on the obtaining of UV-curable coatings with antimicrobial activity. Urethane acrylates (UAs) have excellent physicochemical properties including high reactivity in systems with radical photoinitiators in the presence of UV radiation and good balance between hardness and flexibility in the formed coatings. At the same time, eugenol is well known as the compound hindering the growth of various microorganisms. Hence, the materials obtained by the modification of UA resins with eugenol can be used to protect various surfaces, especially against microorganisms. This study aimed to examine the influence of the amount of eugenol on the chemical, physical, thermal, and mechanical properties of the obtained UA coatings and find the conditions at which the optimal properties for industrial applications such coatings can be achieved. These materials were successfully obtained. Taking into account that eugenol is a very cheap reactant, and it can be obtained from natural sources by the simple distillation method, the proposed method combined the good points of obtaining protective coatings by UV curing with the utilization of vegetable, renewable reactants (biomass), such as components giving special properties to these materials, in this case, antimicrobial properties. In this study, photoreactive coatings with antimicrobial properties for the following microorganisms: fungi (C. albicans), Gram-positive bacteria (S. epidermidis) as well as Gram-negative bacteria (E. coli), were obtained. The obtained coatings were cured over a short time. They were colorless and characterized by a wide range of properties and applications.


MRS Advances ◽  
2020 ◽  
Vol 5 (21-22) ◽  
pp. 1113-1120
Author(s):  
Hailemariam Gebru ◽  
Zhenjiang Li

ABSTRACTFunctional polymers were previously employed to minimize the susceptibility of metallic nanoparticles (MNPs) for aggregation. Herein, we intended to conjugate catechol moiety into the polymer chain end considering its anchoring ability to virtually most surfaces. Accordingly, catechol end-functionalized polysarcosine (cat-PSar) was successfully prepared from the ring-opening polymerization (ROP) of sarcosine N-carboxyanhydrides (Sar-NCA) using dopamine hydrochloride initiator. ROP of Sar-NCA was carried out at different monomer to initiator feed ratios. The molecular structure of cat-PSar was confirmed by 1H NMR and MALDITOF. Afterward, the obtained catechol functionalized polymer was used for in-situ synthesis and stabilization of silver nanoparticles (Ag-NPs) in aqueous solution. The observed characteristic absorption peak at λmax of 415 nm indicates the formation of Ag-NPs. Scanning electron microscope (SEM) images also elucidate the formation of Ag-NPs with the relatively small sizes of the nanocomposite at a high concentration of silver nitrate. Hence, biomimetic polymers could play a dual role as reducing and stabilizing agents in the preparation of monodispersed MNPs.


2021 ◽  
Vol 21 (10) ◽  
pp. 5120-5130
Author(s):  
Hui Long ◽  
Wei-Cong Kuang ◽  
Shi-Liang Wang ◽  
Jing-Xian Zhang ◽  
Lang-Huan Huang ◽  
...  

Poly(cyclotriphosphazene-co-4,4’-diaminodiphenyl ether) (PPO) microspheres were prepared via a precipitation polymerization method, using hexachlorocyclotriphosphazene (HCCP) and 4,4’-diaminodiphenyl ether (ODA) as monomers. Silver-loaded PPO (PPOA) microspheres were generated by the in situ loading of silver nanoparticles onto the surface by Ag+ reduction. Our results showed that PPOA microspheres were successfully prepared with a relatively uniform distribution of silver nanoparticles on microsphere surfaces. PPOA microspheres had good thermal stability and excellent antibacterial activity towards Escherichia coli and Staphylococcus aureus. Furthermore, PPOA microspheres exhibited lower cytotoxicity when compared to citrate-modified silver nanoparticles (c-Ag), and good sustained release properties. Our data indicated that polyphosphazene-based PPOA microspheres are promising antibacterial agents in the biological materials field.


Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2023 ◽  
Author(s):  
María Belén Estevez ◽  
Sofía Raffaelli ◽  
Scott G. Mitchell ◽  
Ricardo Faccio ◽  
Silvana Alborés

Microorganisms offer an alternative green and scalable technology for the synthesis of value added products. Fungi secrete high quantities of bioactive substances, which play dual-functional roles as both reducing and stabilizing agents in the synthesis of colloidal metal nanoparticles such as silver nanoparticles, which display potent antimicrobial properties that can be harnessed for a number of industrial applications. The aim of this work was the production of silver nanoparticles using the extracellular cell free extracts of Phanerochaete chrysosporium, and to evaluate their activity as antimicrobial and antibiofilm agents. The 45–nm diameter silver nanoparticles synthesized using this methodology possessed a high negative surface charge close to −30 mV and showed colloidal stability from pH 3–9 and under conditions of high ionic strength ([NaCl] = 10–500 mM). A combination of environmental SEM, TEM, and confocal Raman microscopy was used to study the nanoparticle-E. coli interactions to gain a first insight into their antimicrobial mechanisms. Raman data demonstrate a significant decrease in the fatty acid content of E. coli cells, which suggests a loss of the cell membrane integrity after exposure to the PchNPs, which is also commensurate with ESEM and TEM images. Additionally, these biogenic PchNPs displayed biofilm disruption activity for the eradication of E. coli and C. albicans biofilms.


2011 ◽  
Vol 122 (4) ◽  
pp. 2189-2196 ◽  
Author(s):  
Dipanwita Maity ◽  
Mrinal Kanti Bain ◽  
Biplab Bhowmick ◽  
Joy Sarkar ◽  
Saswati Saha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document