Analysis of Tensile Properties of N80Q Steel and 80SH Steel

2020 ◽  
Vol 993 ◽  
pp. 610-615
Author(s):  
Yang Chen ◽  
Hang Wang ◽  
Shang Yu Yang ◽  
Wen Lan Wei ◽  
She Ji Luo ◽  
...  

During heavy oil production, the performance of casing varies with temperature in the service environment. The tensile test of N80Q Steel and 80SH Steel were carried out to evaluate the mechanical properties during the service. The results indicated that the grain size of 80SH steel was relatively uniform and the grain boundary was relatively obvious compared with N80Q steel. A qualitative analysis was performance by relating the tensile properties with different temperature. The results showed that the yield strength, the tensile strength and elongation of N80Q and 80SH steels decreased with increasing temperature, but the degree of decline was limited. The observation of the tensile fracture revealed that the characteristics of the radiation zone of N80Q steel were obvious compared with 80SH steel at 20°C.

2011 ◽  
Vol 682 ◽  
pp. 49-54
Author(s):  
Bin Chen ◽  
Chen Lu ◽  
Dong Liang Lin ◽  
Xiao Qin Zeng

The Mg96Y3Zn1 alloy processed by equal channel angular pressing has been investigated. It was found that the Mg96Y3Zn1 alloy processed by ECAP obtained ultrafine grains and exhibits excellent mechanical properties. After ECAP, the average grain size of Mg96Y3Zn1 alloy refined to about 400 nm. The highest strengths with yield strength of 381.45MPa and ultimate tensile strength of 438.33MPa were obtained after 2 passes at 623K. It was found that cracks were preferentially initiated and propagated in the interior of X-phase during the tensile test. As a result, the elongation of alloy is decreased with pass number increasing.


2010 ◽  
Vol 654-656 ◽  
pp. 194-197
Author(s):  
Wei Fen Li ◽  
Wei Niu ◽  
Zhi Ming Hao ◽  
Ming Hai Li

Experiments of tensile mechanical properties of steel 0Cr18Ni9 are done on the MTS 810 tensile testing machine, and the temperature range is from 20°C to 1200°C. The stress vs. strain curves are obtained. Results show that the elastic modulus, yield stress and tensile strength decrease with increasing temperature .Based on the experiment results, the functions of the elastic modulus, yield strength and tensile strength versus temperature are represented by polynomial.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1190 ◽  
Author(s):  
Chang-rui Wang ◽  
Kun-kun Deng ◽  
Yan Bai

Based on semi-solid mixing technology, two kinds of as-cast Grp (Graphite particles)/AZ91 composites with different Grp volume fractions (5 vol %, 10 vol %) were prepared; these are called 5 vol % Grp/AZ91 composites and 10 vol % Grp/AZ91 composites, respectively. In order to eliminate casting defects, refine grains, and improve mechanical properties, thermal deformation analysis of these composites was conducted. The effect of the addition of Grp and thermal deformation on the microstructure, mechanical properties, and wear resistance of AZ91 composite was explored. The results showed that after 5 vol % Grp was added into the as-cast AZ91 alloy, Mg17Al12 phases were no longer precipitated reticularly along the grain boundary, and Al4C3 phases were formed inside the composite. With the increase in the volume fraction of Grp, the grains of the AZ91 composites were steadily refined. With the increase of forging pass, the grain size of 5% Grp/AZ91 composites decreased first, and then increased. Additionally, the Grp size decreased gradually. There was little change in the yield strength, and the tensile strength and elongation were improved to a certain extent. After forging and extrusion of 5% Grp/AZ91 composites once, the grain size and Grp size were further reduced, and the yield strength, tensile strength, and elongation were increased by 23%, 30%, and 65%, respectively, compared with the composite after forging. With the increase of the number of forging passes before extrusion, the grain size decreased little by little, while the Grp size remained unchanged. The average yield strength, tensile strength, and elongation of the composites after forging and extrusion six times were increased by 3%, 3%, and 23%, respectively, compared with the composite after forging and extrusion once. The wear rate and friction coefficient of the 5% Grp/AZ91 composites decreased after forging once, and the wear mechanism was mainly due to ploughing wear. By comparison, the wear rate and friction coefficient of the 5% Grp/AZ91 composites increased in the extrusion state, and the main wear mechanism was from wedge formation and micro-cutting wear.


Author(s):  
Eun-chae Jeon ◽  
Joo-Seung Park ◽  
Doo-Sun Choi ◽  
Kug-Hwan Kim ◽  
Dongil Kwon

The instrumented indentation test, which measures indentation tensile properties, has attracted interest recently because this test can replace uniaxial tensile test. An international standard for instrumented indentation test has been recently legislated. However, the uncertainty of the indentation tensile properties has never been estimated. The indentation tensile properties cannot be obtained directly from experimental raw data as can the Brinell hardness, which makes estimation of the uncertainty difficult. The simplifying uncertainty estimation model for the indentation tensile properties proposed here overcomes this problem. Though the influence quantities are generally defined by experimental variances when estimating uncertainty, here they are obtained by calculation from indentation load-depth curves. This model was verified by round-robin test with several institutions. The average uncertainties were estimated as 18.9% and 9.8% for the indentation yield strength and indentation tensile strength, respectively. The values were independent of the materials’ mechanical properties but varied with environmental conditions such as experimental instruments and operators. The uncertainties for the indentation yield and tensile strengths were greater than those for the uniaxial tensile test. These larger uncertainties were caused by measuring local properties in the instrumented indentation test. The two tests had the same tendency to have smaller uncertainties for tensile strength than yield strength. These results suggest that the simplified model can be used to estimate the uncertainty in indentation tensile properties.


Author(s):  
C Pandey ◽  
MM Mahapatra

In the present investigation, a systematic study has been undertaken with regard to the effects of tempering time on room temperature mechanical properties of P91 (X10CrMoVNNB9-1) steel. Samples cut from P91 (X10CrMoVNNB9-1) industrial pipe were normalized at 1040 ℃ for 40 min and then tempered at 760 ℃ for different tempering times starting from 2 h to 8 h. Detailed analysis of microstructure, particle size, inter-particle spacing, and secondary phase carbide particles of the tempered samples was conducted by secondary electron microscopy technique. Optical microscopy was also utilized to characterize the tempered samples and for the measurement of grain size. In order to reveal the various phases formed during tempering of P91 (X10CrMoVNNB9-1) steel, X-ray diffraction was carried out . To study the fracture surface morphology of tensile tested and impact tested specimen field-emission scanning electron microscopy was carried out. The effect of tempering time on the microstructural parameters revealed an increase in grain size up to 4 h of tempering and then decreased because of recrystallization. The coarsening of secondary phase carbide particles M23C6 was revealed with an increase in tempering time. As a consequence, yield strength, hardness, and ultimate tensile strength were observed to decrease with increase in the tempering time. However, a drastic change was observed in the yield strength, ultimate tensile strength, and toughness after tempering for 6 h. From the present study, it was concluded that optimum combination of yield stress, ultimate tensile strength, hardness, and toughness obtained after tempering at 760 ℃ for 6 h.


2016 ◽  
Vol 61 (2) ◽  
pp. 475-480
Author(s):  
K. Bolanowski

Abstract The paper analyzes the influence of different heat treatment processes on the mechanical properties of low-alloy high-strength steel denoted by Polish Standard (PN) as 10MnVNb6. One of the findings is that, after aging, the mechanical properties of rolled steel are high: the yield strength may reach > 600 MPa, and the ultimate tensile strength is > 700 MPa. These properties are largely dependent on the grain size and dispersion of the strengthening phase in the ferrite matrix. Aging applied after hot rolling contributes to a considerable rise in the yield strength and ultimate tensile strength. The process of normalization causes a decrease in the average grain size and coalescence (reduction of dispersion) of the strengthening phase. When 10MnVNb6 steel was aged after normalization, there was not a complete recovery in its strength properties.


2012 ◽  
Vol 445 ◽  
pp. 213-218 ◽  
Author(s):  
Ahmet Koyun ◽  
Baris Koksal ◽  
Esma Ahlatcioglu ◽  
A. Binnaz Hazar Yoruc

The mechanical properties, among all the properties of plastic materials, are often the most important properties because virtually all service conditions and the majority of end-use applications involve some degree of mechanical loading [1]. In the present work three different commercial polyethylene materials are tensile tested at four or five different tensile rates and two or three temperatures. Tensile test results against tensile rate include stress at 0.5 % elongation, tensile strength, yield strength, modulus of elasticity, elongation at yield and % elongation are determined. It is concluded that the structure, chain lengths and branching rates of polymer matrix significantly effected tensile test curve characteristic.


1990 ◽  
Vol 206 ◽  
Author(s):  
G. W. Nieman ◽  
J. R. Weertman ◽  
R. W. Siegel

ABSTRACTMeasurements of tensile strength and creep resistance have been made on bulk samples of nanocrystalline Cu, Pd and Ag consolidated from powders by cold compaction. Samples of Cu-Cu2O have also been tested. Yield strength for samples with mean grain sizes of 5–80 nm and bulk densities on the order of 95% of theoretical density are increased 2–5 times over that measured in pure, annealed samples of the same composition with micrometer grain sizes. Ductility in the nanocrystalline Cu has exceeded 6% true strain, however, nanocrystalline Pd samples were much less ductile. Constant load creep tests performed at room temperature at stresses of >100 MPa indicate logarithmic creep. The mechanical properties results are interpreted to be due to grain size-related strengthening and processing flaw-related weakening.


2018 ◽  
Vol 37 (1) ◽  
pp. 97-103 ◽  
Author(s):  
Hansong Xue ◽  
Xinyu Li ◽  
Weina Zhang ◽  
Zhihui Xing ◽  
Jinsong Rao ◽  
...  

AbstractThe effects of Bi on the microstructure and mechanical properties of AZ80-2Sn alloy were investigated. The results show that the addition of Bi within the as-cast AZ80-2Sn alloy promotes the formation of Mg3Bi2 phase, which can refine the grains and make the eutectic phases discontinuous. The addition of 0.5 % Bi within the as-extruded AZ80-2Sn alloy, the average grain size decreases to 12 μm and the fine granular Mg17Al12 and Mg3Bi2 phases are dispersed in the α-Mg matrix. With an increase in Bi content, the Mg17Al12 and Mg3Bi2 phases become coarsened and the grain size increases. The as-extruded AZ80-2Sn-0.5 %Bi alloy has the optimal properties, and the ultimate tensile strength, yield strength and elongation are 379.6 MPa, 247.1 MPa and 14.8 %, respectively.


2013 ◽  
Vol 753 ◽  
pp. 473-476 ◽  
Author(s):  
Naoto Sakai ◽  
Kunio Funami ◽  
Masafumi Noda ◽  
Hisashi Mori ◽  
Kenji Fujino

In the present study, the grain refinement, grain growth behavior, and tensile properties of rolled and annealed AZX311 Mg alloys were investigated. The yield strength and ultimate tensile strength of the rolled material were 360 MPa and 370 MPa, respectively, and the total elongation was 5%. When annealing was performed at 423 K for 1hr, the yield strength and ultimate tensile strength were unchanged, but the elongation increased to 10%. Furthermore, the strength and elongation did not change for annealing temperatures of 473–673 K owing to Al2Ca precipitations.


Sign in / Sign up

Export Citation Format

Share Document