Fractography and Structural Analysis of WE43 and Elektron 21 Magnesium Alloys with Unmodified and Modified Grain Size

2012 ◽  
Vol 191 ◽  
pp. 123-130
Author(s):  
Stanisław Roskosz ◽  
Bartłomiej Dybowski ◽  
Jan Cwajna

Magnesium alloys, thanks to their low density, are characterized by very high specific strength and specific stiffness. Due to acceptable mechanical properties, these alloys are widely used in automotive and aerospace industries for the elements such as: gearbox and engine housings, steering wheel columns or wheels. The main problem of the most common magnesium alloys – such as AZ91 are their weak high temperature properties. This led to development of alloys containing rare earth elements. These alloys achieve their demanded mechanical properties after grain refinement with the zirconium. Because of a big responsibility of the elements made from Mg-RE alloys, it is important to investigate modification impact on properties of the magnesium alloys. The paper presents results of studies properties of the WE43 and Elektron 21 casting magnesium alloys, modified in three different ways – according to Magnesium-Elektron specification, 50% stronger modification and 100% stronger. For the comparison, unmodified alloys were also investigated. Investigations showed, that alloys modified according to MEL specification presents optimal set of structural and mechanical properties. Further increase of amount of modifiers doesn’t let to significant increase of mechanical properties. Fractographic investigations showed many non-metallic inclusions on the fractures surface, which are result of faulty smelting process.

2012 ◽  
Vol 715-716 ◽  
pp. 171-172
Author(s):  
D. Randman ◽  
J. Corteen ◽  
W.M. Rainforth ◽  
B.P. Wynne ◽  
B. Davis

There has recently been renewed interest in magnesium alloys from both the automotive and aerospace industries. Due to the low density (approximately 35% lower than aluminium) and high specific strength, these alloys can introduce significant weight savings, and consequently fuel savings, to both vehicles and aircraft. Elektron™ 675 is a new alloy based on the magnesium-yttrium-gadolinium ternary system, developed by Magnesium Elektron Ltd. for wrought applications. Elektron™ 675 has superior mechanical properties relative to the current commercially available wrought alloys AZ31B, WE43, and ZK60.


2014 ◽  
Vol 59 (1) ◽  
pp. 11-16 ◽  
Author(s):  
J. Arbaoui ◽  
Y. Schmitt ◽  
J.-L. Pierrot ◽  
F.-X. Royer

Abstract Sandwich structures are widely used in lightweight construction especially in aerospace industries because of their high specific strength and stiffness. This paper investigates the effect of core thickness and intermediate layers on the mechanical properties of a polypropylene honeycomb core/composite facing multilayer sandwich structure under three points bending. We developed a theoretical model which makes it possible to calculate the shear properties in multi-cores. The results obtained by this model are agreed with our experimental results, and the results obtained with bending test showed that the mechanical properties of the composite multilayer structures increase with core thickness and intermediate layers.


2018 ◽  
Vol 941 ◽  
pp. 1071-1076
Author(s):  
Seiji Saikawa ◽  
Manabu Mizutani ◽  
Nozomu Kawabe

Magnesium alloys have the characteristic with high specific strength and lightweight property, it is widely used for auto mobile industry. Heat-resistant magnesium alloy is focused as a suitable material for weight reduction of the engine and power train parts in automotive field. In this study, microstructure and heat-resistant property in Mg-3mass%Al-1mass%Si (Mg-3%Al-1%Si) alloy with containing large amount of Sn (tin) were investigated. The alloys produced by permanent mold casting were investigated by optical microscope (OM), scanning electron microscopy (SEM) and measuring of bolt load retention at 423K. The heat-resistant property of Mg-3mass % Al-1mass % Si alloy with containing 6-13masss%Sn was higher compared with Sn free alloy and conventional Magnesium alloys (e.g. AZ91 and AM60 alloys).


2011 ◽  
Vol 278 ◽  
pp. 551-556 ◽  
Author(s):  
Helmut Clemens ◽  
Wilfried Smarsly

Development and processing of high-temperature materials is the key to technological progress in engineering areas where materials have to meet extreme requirements. Examples for such areas are the aerospace and automotive industries. New structural materials have to be stronger, stiffer and lighter to withstand the extremely demanding conditions in the next generation of aero- and automotive engines. Intermetallic -TiAl based alloys exhibit numerous attractive properties which meet these demands. These properties include high melting point, low density, high specific elastic modulus, good oxidation and burn resistance, and high specific strength up to application temperatures of 700 to 800°C. Thus, current -TiAl based alloys outperform advanced Ti-based alloys and have the potential to replace heavy Ni-based superalloys.


2011 ◽  
Vol 201-203 ◽  
pp. 203-208
Author(s):  
Liang Chen ◽  
Shu Guang Zhao ◽  
Li Juan Zhang ◽  
Li Qiang Zhang ◽  
Wen Bing Zhang

Woven fabrics are used in a wide variety of products, and they are prized for their flexibility, formability, and high specific strength. However, modeling woven cloth is difficult due, in particular, to complex mechanical properties. In this paper, the shear behavior of plain woven fabric is studied. Through the analysis, a mechanical model is proposed which take the shearing properties into account. It uses physical-based model for animating cloth objects. Furthermore, we demonstrate the efficiency of this method with examples related to accurate cloth simulation from experimental shear curve measured on actual materials.


Metals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1135 ◽  
Author(s):  
Li ◽  
Ma ◽  
Jia ◽  
Meng ◽  
Tang ◽  
...  

The microstructure and mechanical properties of rapidly solidified β-type Ti–Fe–Sn–Mo alloys with high specific strength and low elastic modulus were investigated. The results show that the phases of Ti–Fe–Sn–Mo alloys are composed of the β-Ti, α-Ti, and TiFe phases; the volume fraction of TiFe phase decreases with the increase of Mo content. The high Fe content results in the deposition of TiFe phase along the grain boundary of the Ti phase. The Ti75Fe19Sn5Mo1 alloy exhibits the high yield strength, maximum compressive strength, large plastic deformation, high specific strength, high Vickers hardness, and large toughness value, which is a superior new engineering material. The elastic modulus (42.1 GPa) of Ti75Fe15Sn5Mo5 alloy is very close to the elastic modulus of human bone (10–30 GPa), which indicating that the alloy can be used as a good biomedical alloy. In addition, the large H/Er and H3/Er2 values of Ti75Fe19Sn5Mo1 alloy indicate the good wear resistance and long service life as biomedical materials.


2013 ◽  
Vol 197 ◽  
pp. 125-130
Author(s):  
Bartłomiej Dybowski ◽  
Robert Jarosz ◽  
Andrzej Kiełbus

Magnesium alloys are widely used in aerospace and automotive industry due to their low density, good mechanical properties and good castability. The paper presents results of the castability tests and microstructural investigations on two unmodified magnesium casting alloys, Elektron 21 and QE22. Spirals for the castability test were poured from three temperatures: 755°C, 800°C and 835°C. Volume fraction of eutectic regions and grain size in both alloys were quantitatively evaluated. Castability increased with increasing pouring temperature. Quantity of eutectics and grain size did not show straight correlation with pouring temperature.


2010 ◽  
Vol 89-91 ◽  
pp. 227-231 ◽  
Author(s):  
Go Hamada ◽  
Tetsuo Sakai ◽  
Hiroshi Utsunomiya

Magnesium alloys are expected to be used widely as structural materials because of their lowest density (1.8g/cm3) among all practical alloys and superior specific strength. However, magnesium alloys exhibit poor ductility due to its hcp structure and inactiveness of non-basal slip systems below 523K. Accordingly, magnesium alloy sheets had to be rolled at elevated temperature to avoid edge cracking and fracture during rolling. The present authors succeeded in single pass large draught rolling of AZ31 magnesium alloy sheets below 473K without heating rolls by rolling at the speed higher than 1000m/min. The rolled and quenched sheets had fine recrystallized microstructure and exhibited excellent mechanical properties. It was found that the high speed rolling is a promising method not only for increasing productivity but also for controlling microstructures and improving mechanical properties. If the above mentioned advantages of high speed rolling can be drawn from the rolling at the speed lower than 1000m/min, it is possible to mass-produce magnesium alloy sheets having superior mechanical properties at lower cost. In this study, we tried to determine the lower limiting rolling speed at which we can obtain advantages of high speed rolling. We revealed that the thickness could be reduced about 60% by single pass operation even at 250m/min without heating rolls. The rolled and quenched sheets had equiaxed fine recrystallized microstructure. For example, the mean grain size of 2.1m was obtained in the AZ31B sheet rolled at 250m/min at room temperature to the reduction of 60%.


2015 ◽  
Vol 813-814 ◽  
pp. 208-212
Author(s):  
S. Ghanaraja ◽  
K.L. Vinuth Kumar ◽  
K.S. Ravikumar ◽  
B.M. Madhusudan

The Synthesis of aluminium matrix composites is receiving considerable emphasis in meeting the requirements of various industries. Due to the desired properties such as low weight, high specific strength, good corrosion resistance and excellent wear resistance, they have received a great interest in the recent years. Metal-matrix composites (MMCs) based on aluminium and magnesium has emerged as an important class of materials and Al2O3can be considered as ideal reinforcements, due to their high strength, high aspect ratio and thermo-mechanical properties. The objective of this work is to reinforce Al 1100-Mg alloy with different wt% of Al2O3(0, 3, 6, 9 and 12) was added by melt stirring method and Extrusion is carried out (extrusion ratio of 12.25) for the same alloy and composites. Mechanical property like hardness and tensile properties have been investigated for cast and extruded of base alloy and composites.


Sign in / Sign up

Export Citation Format

Share Document