The Effect of Class C Fly Ash on the Water Impermeability of Brick Body

2021 ◽  
Vol 321 ◽  
pp. 141-147
Author(s):  
Radomír Sokolař ◽  
Martin Nguyen ◽  
Oldřich Pavelka

The effect of fluidized fly ash (Tisová, ČEZ Group Czech Republic, class C according to ASTM C618) on the porosity (water absorption, bulk density, capillarity) and water impermeability of brick body used for the production of clay roofing tiles (Wienerberger, Czech Republic). The properties of plastic body (mixing water, drying shrinkage) are discussed too. The addition (10 %wt) of fluidized fly ash in the raw materials mixture for the production of clay roofing tiles generally reduces the sensitivity to the formation of reducing cores during firing thanks to higher porosity of dried green body (higher mixing water) - this is also related to the higher water absorption and capillarity of the fired body and hence to the impaired water impermeability when the fly ash is used.

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2761
Author(s):  
Radomir Sokolar ◽  
Martin Nguyen

The main aim of the presented article is to describe the behavior of class C fly ash—kaolin plastic doughs during the ageing process. Class C fly ash (CCFA) from the fluidized technology of fuel combustion in a thermal power plant was used as a non-plastic admixture to modify the plasticity in a kaolin–quartz sand mixture (for example, the base of a porcelain mixture). The ageing of plastic ceramic dough determined the effect of the CCFA admixture (0–10–20 wt. %) on the initial water content, plasticity (according to the Pfefferkorn test) and bulk density of a dried green body. The main feature of the CCFA admixture in the kaolin–quartz sand mixture is a solidifying effect. Fly ash increases the initial (mixing) water for the preparation of ceramic dough with constant plasticity (30 mm height of deformed cone Hf, according to the Pfefferkorn test), and Hf increases as the dough ages (the dough solidifies faster and loses its plasticity) with the addition of class C fly ash. The effect of CCFA addition on the plasticity and ageing of kaolin–quartz sand dough is documented on Bigot curves: higher content of fly ash decreases the drying shrinkage of the plastic dough, especially when drying samples that have been aged for 24 h in a plastic wrap (without the possibility of drying). The plastic dough’s ageing increases the porosity of the dried green body with increased content of CCFA in the raw materials mixture and increased ageing time.


2021 ◽  
Vol 11 (3) ◽  
pp. 1037
Author(s):  
Se-Jin Choi ◽  
Ji-Hwan Kim ◽  
Sung-Ho Bae ◽  
Tae-Gue Oh

In recent years, efforts to reduce greenhouse gas emissions have continued worldwide. In the construction industry, a large amount of CO2 is generated during the production of Portland cement, and various studies are being conducted to reduce the amount of cement and enable the use of cement substitutes. Ferronickel slag is a by-product generated by melting materials such as nickel ore and bituminous coal, which are used as raw materials to produce ferronickel at high temperatures. In this study, we investigated the fluidity, microhydration heat, compressive strength, drying shrinkage, and carbonation characteristics of a ternary cement mortar including ferronickel-slag powder and fly ash. According to the test results, the microhydration heat of the FA20FN00 sample was slightly higher than that of the FA00FN20 sample. The 28-day compressive strength of the FA20FN00 mix was approximately 39.6 MPa, which was higher than that of the other samples, whereas the compressive strength of the FA05FN15 mix including 15% of ferronickel-slag powder was approximately 11.6% lower than that of the FA20FN00 mix. The drying shrinkage of the FA20FN00 sample without ferronickel-slag powder was the highest after 56 days, whereas the FA00FN20 sample without fly ash showed the lowest shrinkage compared to the other mixes.


2015 ◽  
Vol 754-755 ◽  
pp. 290-295 ◽  
Author(s):  
Alida Abdullah ◽  
Ku Amirrul Rahman Ku Yin ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Kamarudin Hussin ◽  
Mien Van Tran

This study was conducted to compare the mechanical properties of fly ash artificial geopolymer aggregates with natural aggregate (rock) in term of its impact strength, specific gravity and water absorption.The raw materials used were fly ash, sodium hydroxide, sodium silicate and natural aggregate. After the artificial geopolymer aggregate has been produced, its water absorption, specific gravity and aggregate impact test has been done. All results obtained were compared to natural aggregate. The result shows that the fly ash geopolymer aggregate are lighter than natural aggregate in term of its specific gravity. The impact value for fly ash artificial geopolymer aggregate slightly high compared to natural aggregate while it has high water absorption value compared to natural aggregate. As conclusion, the fly ash artificial geopolymer aggregate can be used as one of the construction materials in concrete as an alternative for coarse aggregate besides natural aggregate with more lightweight properties.


2012 ◽  
Vol 626 ◽  
pp. 404-410 ◽  
Author(s):  
Muhammad Hafiz Ahmad ◽  
Hanizam Awang

This paper investigates the effect of steel fibre and alkaline-resistance glass fibre lightweight foamed concrete with fly ash inclusion towards mechanical and durability properties. The lightweight foamed concrete (LFC) with a density of 1000 kg/m3with constant water sand ratio of 1: 1:5 and water cement ratio of 0.45 was cast and tested. Steel and alkaline-resistance glass fibres were used as additives and 30% of cement was replaced by fly ash. Detail experiments were setup to study the behaviour and reaction of additives which is expected to give different results on mechanical and durability properties of LFC. Compared to AR-glass fibre, steel fibre has greater contribution in terms of mechanical properties. SFLFC resulted as the most effective approach for compressive, flexural, tensile split and water absorption with strength 6.13 N/mm2, 1.96 N/mm2, 1.52 N/mm2and lowest water absorption at 6.5% respectively. On the other hand, AR-glass fibre is better in controlling drying shrinkage which leads to controlling the cracking at early age. Fly ash does not change the mechanical properties and durability due to unprocessed stage to its finer forms.


2014 ◽  
Vol 931-932 ◽  
pp. 416-420 ◽  
Author(s):  
Ridtirud Charoenchai ◽  
Prinya Chindaprasirt

New types of binders are being developed as an alternative to traditional cement. These alternatives are developed to have better properties and to be more environmentally friendly. Geopolymer is a novel binder that is produced from by-products such as fly ash, rich hushes ash and bio mass ash. In this experiment, fly ash, which was a by-product from electrical-generating power plants, was used during the synthesis of geopolymer. According to ASTM standard C168, fly ash is categorized into two types: class F and class C. This research focuses on the effects of using both types of fly ashes on mechanical properties of geopolymer. The experiment studies the changes on setting time, drying shrinkage and compressive strength of geopolymer mortar when 0, 25, 50, 75 and 100 percent of total weight of class F fly ash (LCF) is substituted with class C counterpart (HCF). The study used sodium silicate (Na2SiO3) and sodium hydroxide (NaOH) as alkali activators. The samples were cured for 24 hours either at an ambient temperature of 25°C or at an elevated temperature of 60°C.The result showed that the setting time of pure LCF geopolymer mortar was 6 times longer than that of the pure HCF ones. In addition to setting time, the specimens with 25 percent of their total binders weight replaced by HCF appeared to have the highest strength. However, the increase in HCF also increased the drying shrinkage by 6 and 12times when the specimens were cured at25°C and at 60°C respectively


2018 ◽  
Vol 766 ◽  
pp. 264-269 ◽  
Author(s):  
Tarit Prasartseree ◽  
Thanakorn Wasanapiarnpong ◽  
Charusporn Mongkolkachit ◽  
Noppasint Jiraborvornpongsa

Electricity generation at Mae Moh Power Plant in Lampang, Thailand, uses lignite as fuel. The output is 3.0 to 3.5 million tons of fly ash per year and 1.5 to 2.0 million tons of bottom ash per year. Fly ash is widely used in concrete application but for bottom ash, it is not very useful. When considering the phase of bottom ash containing quartz, anorthite and hematite, it was found that there are suitable chemical compositions for replacement of raw materials in ceramic tile. Generally, the stoneware tiles are composed of quartz, mullite, feldspar, and glass phase. Water absorption of stoneware ceramic tiles is below 5%, high strength, fire resistance, and low warpage. Firing or sintering at rather high temperature as 1000-1250 °C is the manufacturing process for this type of tile. The changes in crystal structure and glassy phase formation in tile texture during sintering will be often result the tile to warpage or bent. The more or less lean depends on the viscosity of the glassy phase that occurs at high temperatures in the tile if less viscosity will cause higher warping rate that effect on the shape, and quality of the workpiece. The research has reported that anorthite phase improves the viscosity of a liquid phase or glassy phase when the tile is sintering at high temperatures and lead to high density and low water absorption. This research is interested in studying the effect of using lignite bottom ash as an ingredient in ceramic tile texture to produce low water absorption type by analyzing the effect of percentage of lignite bottom ash to warpage and important properties of ceramic tiles.


2011 ◽  
Vol 8 (1) ◽  
pp. 39-45 ◽  
Author(s):  
Jamasri, Muhammad Waziz Wildan ◽  
Kusnanto. Kusnanto

The bending strength of composite made from fly ash and glass waste can be improved by controlling chemical composition of the raw materials and sintering temperatures. In this study, the composites made from mixture of various weight fractions between fly ash (FA) and glass waste (GL). Each mixture was uni-axially pressed with various compacting pressures to produce green body. The formed green body was then sintered at various temperatures from 900 °C to 1100°C for 2h. From the experimental result, it shows that the bending strength of composite fly ash and glass waste is highly varied based on the weight fraction of glass waste content, sintering temperatures and compacting pressures. The highest bending strength value is 44.53 MPa obtained from specimen that contains 50 (% wt.) of glass waste with sintering temperature of 1050 °C and compacting pressure of 130 MPa. A thermal shock test was performed on the specimen composites of 50FA-50GL by heating up to various temperatures and followed by quenching (rapid cooling) to water media. Bending test was then done on the thermal shocked specimen. The bending strength of specimen decreases sharply around 80.93 % from its original strength when subjected to temperature gradient (ΔT) of 285 °C.


2014 ◽  
Vol 969 ◽  
pp. 308-311
Author(s):  
Ondřej Zobal ◽  
Pavel Padevět ◽  
Vít Šmilauer ◽  
Zdeněk Bittnar

The use of fly ash as a substitute for cement clinker brings some benefits, but also problems. One of the biggest problems of using fly ash in general is its high variability. This paper is dedicated not only to the variability of fly ash in the Czech Republic, but the issue of different water absorption of fly ash is described here as well. In addition, one of the options for coping with variability is stated here. If we follow one of the main indicators for sorting fly ash, which is the grading curve, we can optimize the use of ash produced. Based on grading curves, the mixing of various ash fractions was optimized with regard to the porosity of the mixture. Porosity has a direct effect on the compressive strength of the resulting material. This optimization will subsequently be verified experimentally.


Respuestas ◽  
2016 ◽  
Vol 21 (2) ◽  
pp. 48 ◽  
Author(s):  
Jorge Sánchez-Molina ◽  
Alejandra Sarabia-Guarin ◽  
Diana Carolina Alvarez-Rozo

Antecedentes: Los municipios de Cúcuta, Los Patios, Villa del Rosario, El Zulia y San Cayetano, representan el 10% de la extensión del departamento de Norte de Santander, y el 6,85% de su territorio lo ocupa la industria cerámica, la cual produce todo tipo de productos derivados de la arcilla; mineral cuyas características físicas, químicas y mineralógicas varían ampliamente, por lo que el control de la calidad de los productos empieza por la caracterización y control de calidad de sus materias primas. Objetivo: Caracterizar mediante análisis químicos, mineralógicos y físico-cerámicos tres materias primas utilizadas en la fabricación de productos de gres: arcilla, chamota y caliza provenientes del departamento Norte de Santander. Métodos: Se caracterizaron las materias primas mediante las técnicas de DRX, FTIR, y ensayos físico-cerámicos que incluyen contracción en secado, contracción en cocido, absorción de agua, pérdidas por calcinación y porcentaje de arena. Posteriormente por extrusión y prensado se obtuvieron probetas de tres tipos de mezclas referenciadas como M1, M2 y M3, con diferente composición de material arcilloso, chamota y caliza, luego se sinterizaron a 1050°C-1250°C y se analizó la absorción de agua y el porcentaje de contracción en la curva de gresificación. Resultados: El patrón de DRX muestra la presencia de cuarzo y caolinita en la arcilla, y de calcita y cuarzo en la caliza, lo cual se evidencia en el espectro FTIR. El comportamiento físico-cerámico de las mezclas realizadas evidenció valores significativamente bajos de absorción de agua (inferior al 6%) con temperaturas de cocción de entre 1150°C y 1250°C. Conclusión: Se identificó que las materias primas evaluadas son aptas para la fabricación de baldosas de gres, siendo M3-E la formulación más óptima, compuesta por 80% material arcilloso, 15% chamota y 5% caliza (pasante malla 100), y moldeada por extrusión. Palabras clave: arcilla, absorción de agua, caliza, difracción de rayos x, espectroscopia infrarroja.AbstractBackground: The municipalities of Cucuta, Los Patios, Villa del Rosario, Zulia and San Cayetano, representing 10% of the department’s extension of Norte de Santander, and 6.85% of its territory is occupied by the ceramic industry, which produces all kinds of products derived from clay; mineral whose physical, chemical and mineralogical characteristics vary widely, so the quality control of products, beginning with the characterization and  quality control of raw materials. Objective: To characterize by chemical, mineralogical, and physico-ceramic analysis three raw materials used in the manufacture of ceramic: clay, fire clay and limestone from the Norte de Santander department. Methods: raw materials were characterized by techniques of DRX, FTIR, and physical-ceramic tests including shrinkage in drying shrinkage cooked, water absorption, loss on ignition and percentage of sand. Subsequently they extruded and pressed samples of three types of mixtures referenced as M1, M2 and M3, with different composition of clay, fire clay, limestone, then were sintered at 1050°C-1250°C and the behavior of water absorption and the percentage shrinkage was analyzed in vitrification curve. Results: The pattern of DRX shows the presence of quartz and kaolinite in the clay and calcite and quartz in the limestone, which is evident in the FTIR spectrum. The physical-ceramic behavior of mixtures made significantly low showed water absorption values (less than 6%) with firing temperatures between 1150°C and 1250°C. Conclusion: Was identified that assessed raw materials are suitable for manufacturing of stoneware tiles, being M3-E the most optimal formulation composed of 80% clay material, 15% grog, and 5% limestone (through 100 mesh), and molded by extrusion.Keywords: clay, calcite, x-ray diffraction, infrared spectroscopy, water absorption


Author(s):  
Chidananda G

Abstract: This paper presents an experimental investigation carried out on eco-friendly fly ash bricks having various percentage of fly ash, lime, gypsum, stone dust, coarse aggregate and boiler slag. Raw materials are added to the pan mixer with different mix proportions and are mixed thoroughly with water until a homogeneous mixture is formed. Prepared homogeneous mixture is fed into the press and moulded to a brick of size 200 x 200 x 300 mm using vibro-hydraulic press. Moulded bricks are air dried for 24 hours, arranged in stacks and are cured for a period of 28 days by sprinkling the water to achieve the optimum strength. Compressive strength, water absorption, efflorescence, dimension tolerance and density tests are conducted as per BIS codal provisions. Eco friendly fly ash bricks having varying proportions of industrial by-products with less content of stone dust satisfy compressive, water absorption, efflorescence, dimensional tolerance and density requirements as per BIS codal provisions and can be used in structures as a sustainable construction material. Keywords: Eco-friendly fly ash bricks, Compressive strength, Water absorption, Efflorescence, Dimension tolerance and Density


Sign in / Sign up

Export Citation Format

Share Document