The Untethered Remotely Operated Vehicle PICASSO-1 and Its Deployment From Chartered Dive Vessels for Deep Sea Surveys Off Okinawa, Japan, and Osprey Reef, Coral Sea, Australia

2012 ◽  
Vol 46 (4) ◽  
pp. 20-32 ◽  
Author(s):  
Dhugal J. Lindsay ◽  
Hiroshi Yoshida ◽  
Takayuki Uemura ◽  
Hiroyuki Yamamoto ◽  
Shojiro Ishibashi ◽  
...  

AbstractThe untethered remotely operated vehicle (uROV) PICASSO-1, which is controlled in real time from a surface support vessel via a Φ0.9 mm fiber optic cable, is capable of dives to 1,000-m depth at a duration of up to 6 h and yet is deployable from ships of sizes as low as 17 tonnes. The vehicle was developed at the Japan Agency for Marine-Earth Science and Technology, has carried out 63 dives to date, and is now operable by a team of four biologists and one technician. PICASSO-1 can collect video (HDTV × 1, NTSC × 3) and environmental information (depth, temperature, salinity, dissolved oxygen concentration, fluorescence [chlorophyll a proxy], turbidity) concurrently, and this is output with vehicle heading, camera zoom, and other vital statistics via Ethernet. Acoustically obtained vehicle position information, deck and control room video, and sound data streams are also output via Ethernet, and the whole dive is recorded in a synchronous fashion on a logging/playback system that enables dives to be re-enacted in their entirety to facilitate analyses back in the laboratory. Operations have been successfully carried out overseas using a chartered dive boat, and the system represents a leap forward for exploration of the oceans to significant depths but at relatively low cost and with no loss in data quality.

2013 ◽  
Vol 694-697 ◽  
pp. 1582-1586
Author(s):  
Xiao Han ◽  
Xiao Jun Yang ◽  
Naqvi Najam Abbas

This paper describes an integral scheme of the design and simulation of the Attitude Determination and Control Subsystem (ADCS) of CubeSat. CubeSat is an educational low-cost, cube-shaped Pico spacecraft. Attitude Determination (AD) is the problem of expressing the orientation of a spacecraft with respect to a given coordinate system. Three axis magneto-resistive digital magnetometer is selected as an attitude sensor. The International Geomagnetic Reference Field (IGRF) is used as reference for magnetometer to obtain attitude information. An enhanced orbit estimate/propagator is implemented to provide position information to IGRF model. Satellite environmental torque is modeled along with satellite kinematics and dynamics. Attitude estimation is done using Extended Kalman Filter (EKF) while the magnetic coils are used as actuators. Attitude Control is applied using Linear Quadratic Regulation (LQR) Controller. The designed ADCS is implemented in Matlab/Simulink.


Author(s):  
Tran Ngoc Huy ◽  
Huynh Tan Dat

Shallow water zones, including lakes, ponds, creeks, and rivers, play a prominent role in the spiritual culture and economy of Vietnamese people throughout history. Therefore, numerous researches have been conducted in regard to this topic for many purposes, most of which focus on elevating the quality of life and safety. With the aid of new technology, modern platforms gradually replace conventional methods and reach a higher level of efficiency and convenience. This paper presents the research on design and control of Remotely Operated Vehicle (ROV) belonging to National key Laboratory of Digital Control and System Engineering. Basically, it is controlled by human pilots to move underwater and perform specifically pre-assigned tasks. The power supply and communication channel for the vehicle are connected from an onshore station via cable systems. There are several stages of the pipeline in implementing a full-scale ROV platform that must be studied carefully. Prior to the experiments in practical conditions, the proposed 3D model designed by SOLIDWORKS® and MATLAB Simulink® mathematical model analysis firstly provide a nonlinear plant in order to apply classical PID controllers and evaluate their feasibility through simulation process. The outer frame protects other components from being damaged or unattached, while the thruster allocation strategy from the simulated model enables flexibility in motion. A system of sensors and cameras collects data from an underwater environment for on-the-spot monitoring, or they can be captured for further post-analysis processes. After assembling all parts into a whole model, we launched the vehicle at the maximum depth of a pool as the condition of a shallow water survey. Optimistic experimental results have proved the ability of controllers even in case of the presence of external disturbances.


2015 ◽  
Vol 9 (1) ◽  
pp. 67-75 ◽  
Author(s):  
Khoa Duy Le ◽  
◽  
Hung Duc Nguyen ◽  
Dev Ranmuthugala

This paper presents the development of a low cost Remotely Operated Vehicle (ROV) which consists of open source hardware and has three thrusters. First, the hardware of the vehicle, including the actuators, sensors, and control structure, is described. Second, to study the relationship between the thrust forces and the performance of the ROV, a mathematical model of the vehicle in the form of a kinematic and kinetic model is established. Next, a hybrid control algorithm consisting of two components, namely model-based and PID algorithms, is proposed for surge speed, depth, and heading control. The effectiveness of the hybrid control algorithm is then verified by the ROV mathematical model-based simulations. Finally, free running tests for depth control are conducted to verify the robustness and reliability of the control structure and proposed algorithms.


2012 ◽  
Vol 190-191 ◽  
pp. 627-633
Author(s):  
Biao Wang ◽  
Chao Wu ◽  
Tong Ge

This paper presents a low cost compact solution for a Remotely Operated Vehicle (ROV) control system. Both hardware architecture and software architecture are discussed. STM32F-1 series MCUs are used for sensor data acquisition [1], output calculation and actuator control. For software, a real-time OS uC/OS-II is embedded in the MCU [2]. The whole control system has been implemented on an observation ROV HIPPO. The result of tank test shows this kind of control system has good performance on maneuverability, stability, reliability and control accuracy. Furthermore, HIPPO has successfully served as a third-party vision provider in the lake trail of another ROV.


Author(s):  
José Luis Viramontes-Reyna ◽  
Josafat Moreno-Silva ◽  
José Guadalupe Montelongo-Sierra ◽  
Erasmo Velazquez-Leyva

This document presents the results obtained from the application of the law of Lens to correctly identify the polarity of the windings in a three-phase motor with 6 exposed terminals, when the corresponding labeling is not in any situation; Prior to identifying the polarity, it should be considered to have the pairs of the three windings located. For the polarity, it is proposed to feed with a voltage of 12 Vrms to one of the windings, which are identified randomly as W1 and W2, where W1 is connected to the voltage phase of 12 Vrms of the signal and W2 to the voltage reference to 0V; by means of voltage induction and considering the law of Lens, the remaining 4 terminals can be identified and labeled as V1, V2, U1 and U2. For this process a microcontroller and control elements with low cost are used.


2020 ◽  
Vol 3 (2) ◽  
pp. 68-81
Author(s):  
Abu Sadath ◽  
Farhana Afroz ◽  
Hosne Ara ◽  
Abdulla-Al Kafy

Rivers are the lifeline of Bangladesh economy and serve as the source of water supply, fisheries, irrigation for agriculture, low-cost transport, generate electricity and conserve biodiversity. The Ichamati River situated in Pabna, Bangladesh is also a blessing for the city. However, recently, due to the irregular and unplanned activities adjacent to the riverside, the life, flow and water quality of the river is in a vulnerable condition. This study aims to identify the present status of the Ichamati River and provide an effective design approach and policy measures in restoring the river flow and control water pollution. The data was collected from the questioner surveys, key informant interviews and focus group discussions. Results suggest that several factors such as the construction of an illegal settlement, unplanned waste dumping, disposal of fiscal sludge through sewerage connection, lack of awareness among people regarding the importance of river biodiversity and absence of riverfront development and conservation plan are responsible for water pollution, inconsistent water flow and damaging the life cycle of Ichamati river. The design approach and policy measures were developed based on the perceptions of local community people, experts and government officials. The suggested policy measures will help to restore the flow of the river and reduce the water pollution, and the design approach will ensure the economic benefit of the riverfront development in future.


2021 ◽  
pp. 096100062110165
Author(s):  
Mohammadhiwa Abdekhoda ◽  
Fatemeh Ranjbaran ◽  
Asghar Sattari

This study was conducted with the aim of evaluating the role of information and information resources in the awareness, control, and prevention of COVID-19. This study was a descriptive-analytical survey in which 450 participants were selected for the study. The data collection instrument was a researcher-made questionnaire. Descriptive and inferential statistics were used to analyze the data through SPSS. The findings show that a wide range of mass media has become well known as information resources for COVID-19. Other findings indicate a significant statistical difference in the rate of using information resources during COVID-19 based on age and gender; however, this difference is not significant regarding the reliability of information resources with regard to age and gender. Health information has an undisputable role in the prevention and control of pandemic diseases such as COVID-19. Providing accurate, reliable, and evidence-based information in a timely manner for the use of resources and information channels related to COVID-19 can be a fast and low-cost strategic approach in confronting this disease.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 915
Author(s):  
Gözde Dursun ◽  
Muhammad Umer ◽  
Bernd Markert ◽  
Marcus Stoffel

(1) Background: Bioreactors mimic the natural environment of cells and tissues by providing a controlled micro-environment. However, their design is often expensive and complex. Herein, we have introduced the development of a low-cost compression bioreactor which enables the application of different mechanical stimulation regimes to in vitro tissue models and provides the information of applied stress and strain in real-time. (2) Methods: The compression bioreactor is designed using a mini-computer called Raspberry Pi, which is programmed to apply compressive deformation at various strains and frequencies, as well as to measure the force applied to the tissue constructs. Besides this, we have developed a mobile application connected to the bioreactor software to monitor, command, and control experiments via mobile devices. (3) Results: Cell viability results indicate that the newly designed compression bioreactor supports cell cultivation in a sterile environment without any contamination. The developed bioreactor software plots the experimental data of dynamic mechanical loading in a long-term manner, as well as stores them for further data processing. Following in vitro uniaxial compression conditioning of 3D in vitro cartilage models, chondrocyte cell migration was altered positively compared to static cultures. (4) Conclusion: The developed compression bioreactor can support the in vitro tissue model cultivation and monitor the experimental information with a low-cost controlling system and via mobile application. The highly customizable mold inside the cultivation chamber is a significant approach to solve the limited customization capability of the traditional bioreactors. Most importantly, the compression bioreactor prevents operator- and system-dependent variability between experiments by enabling a dynamic culture in a large volume for multiple numbers of in vitro tissue constructs.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3515
Author(s):  
Sung-Ho Sim ◽  
Yoon-Su Jeong

As the development of IoT technologies has progressed rapidly recently, most IoT data are focused on monitoring and control to process IoT data, but the cost of collecting and linking various IoT data increases, requiring the ability to proactively integrate and analyze collected IoT data so that cloud servers (data centers) can process smartly. In this paper, we propose a blockchain-based IoT big data integrity verification technique to ensure the safety of the Third Party Auditor (TPA), which has a role in auditing the integrity of AIoT data. The proposed technique aims to minimize IoT information loss by multiple blockchain groupings of information and signature keys from IoT devices. The proposed technique allows IoT information to be effectively guaranteed the integrity of AIoT data by linking hash values designated as arbitrary, constant-size blocks with previous blocks in hierarchical chains. The proposed technique performs synchronization using location information between the central server and IoT devices to manage the cost of the integrity of IoT information at low cost. In order to easily control a large number of locations of IoT devices, we perform cross-distributed and blockchain linkage processing under constant rules to improve the load and throughput generated by IoT devices.


Sign in / Sign up

Export Citation Format

Share Document