Super Fine Lead-Free Solder Powder for Fine Pitch Bump Applications

2012 ◽  
Vol 2012 (DPC) ◽  
pp. 001016-001038
Author(s):  
Ryuji Uesugi ◽  
Hironori Uno ◽  
Masayuki Ishikawa ◽  
Akihiro Masuda ◽  
Hiroki Muraoka ◽  
...  

We have successfully developed super fine lead-free and low alpha solder powder, which contains more than two elements by the method of wet chemical reduction. The size (D50) of super fine powder is around 2–3 micrometer to meet finer pitch assembly in the near future. This new method made it available to synthesize various compositions of solder powder like Sn-Ag, Sn-Cu, Sn-Ag-Cu, etc. Also, this method achieves very high yield compared to a gas atomization method. A solder paste for printing method composed of the fine solder powder has a superior printing ability because of the unique powder shape. The powder shows anisotropic shape, and it can make printed figure excellent after printing without bridge and coplanarity issues for finer pitch applications. With our super fine solder paste, we will be ready for <100um pitch of solder bumps which will come in a few years. Furthermore, the super fine powder is applied to the Cu pad pre-coat. The solder paste for pre-coat composed of the super fine powder shows an excellent coverage and solders flatness on the outer pad after reflow.

2015 ◽  
Vol 772 ◽  
pp. 284-289 ◽  
Author(s):  
Sabuj Mallik ◽  
Jude Njoku ◽  
Gabriel Takyi

Voiding in solder joints poses a serious reliability concern for electronic products. The aim of this research was to quantify the void formation in lead-free solder joints through X-ray inspections. Experiments were designed to investigate how void formation is affected by solder bump size and shape, differences in reflow time and temperature, and differences in solder paste formulation. Four different lead-free solder paste samples were used to produce solder bumps on a number of test boards, using surface mount reflow soldering process. Using an advanced X-ray inspection system void percentages were measured for three different size and shape solder bumps. Results indicate that the voiding in solder joint is strongly influenced by solder bump size and shape, with voids found to have increased when bump size decreased. A longer soaking period during reflow stage has negatively affectedsolder voids. Voiding was also accelerated with smaller solder particles in solder paste.


2013 ◽  
Vol 2013 (DPC) ◽  
pp. 000862-000889
Author(s):  
Hironori Uno ◽  
Masayuki Ishikawa ◽  
Akihiro Masuda ◽  
Hiroki Muraoka ◽  
Kanji Kuba

The work to be detailed in this paper is our development of 96.5mass%Sn-3.0mass%Ag-0.5mass%Cu fine solder particles with an average particle size of under 3um (D50), using a chemical reduction method. An evaluation was conducted on the properties of the particles. The average size of particles appeared to be under 3um with a higher yield compared to particles using the conventional gas atomization method. The melting temperature of fine solder particles using this method was its eutectic temperature, which is same as using the gas–atomized particles. 120um pitch solder bumps from the solder paste using the above mentioned fine solder particles were created on the substrate. As a result of property evaluation, it was turned out that the solder paste created a superior printing shape and coplanarity compared to the conventional paste with gas-atomized particles. In order to investigate the superior printing property generated by the paste with fine solder particles, the rheology of the paste was evaluated.It was verified that the anisotropic shape of particles has contributed to prevent the printed paste from slumping, which has resulted in the improvement of printed shape. It also shows that the filling characteristic of the paste was improved by the smaller particles and the better coplanarity was observed. The importance of finer solder particles for finer pitch assembly will be presented.


Author(s):  
Deepak Manjunath ◽  
Satyanarayan Iyer ◽  
Shawn Eckel ◽  
Purushothaman Damodaran ◽  
Krishnaswami Srihari

Fine pitch leadless components, such as Ball Grid Arrays (BGAs) and Chip-Scale Packages (CSPs), are increasingly used in modern day circuitry to aid miniaturization. Assembling these surface mount components using lead-free solder pastes has been a subject of interest for the past several years. Reworking a BGA is complicated as the solder joints are hidden underneath the component. The process window available for the rework process is very narrow and there are number of other critical factors, which complicate and affect the repeatability of the rework process. Consequently, the primary objective of this research endeavor is to develop a reliable and a repeatable process to rework lead-free fine pitch BGAs. The process steps to rework a BGA are component removal, site redressing, solder paste/flux deposition, component replacement and reflow. This experimental study evaluates a number of alternatives for several rework process steps during the course of developing a reliable and repeatable rework process. Two alternatives for site redressing namely, (i) copper wick with soldering iron, and (ii) vacuum de-soldering methods are evaluated. Similarly the application of solder paste versus gel flux is compared. A localized reflow method for replacing the component at the SRT machine is developed and it is compared with forced convection in reflow oven. The pros and cons of using the two reflow methods and the effect of multiple reflows on solder joint reliability is discussed in the paper. A reliability study was conducted on the samples and the results are presented to compare the various alternatives.


2011 ◽  
Vol 2011 (1) ◽  
pp. 000650-000656
Author(s):  
J. H. Lau ◽  
P-J Tzeng ◽  
C-K Lee ◽  
C-J Zhan ◽  
M-J Dai ◽  
...  

In this study, the wafer bumping and characterization of fine-pitch lead-free solder microbumps on 300mm wafer for 3D IC integration are investigated. Emphasis is placed on the Cu-plating solutions (conformal and bottom-up). Also, the amount of Cu and solder (Sn) volumes is examined. Furthermore, characterizations such as shearing test and aging of the microbumps are provided and cross sections/SEM images of the microbumps before and after test are discussed. Finally, the process windows of applying the conventional electroplating wafer bumping method of the ordinary solder bumps to the microbumps are also presented.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3353
Author(s):  
Marina Makrygianni ◽  
Filimon Zacharatos ◽  
Kostas Andritsos ◽  
Ioannis Theodorakos ◽  
Dimitris Reppas ◽  
...  

Current challenges in printed circuit board (PCB) assembly require high-resolution deposition of ultra-fine pitch components (<0.3 mm and <60 μm respectively), high throughput and compatibility with flexible substrates, which are poorly met by the conventional deposition techniques (e.g., stencil printing). Laser-Induced Forward Transfer (LIFT) constitutes an excellent alternative for assembly of electronic components: it is fully compatible with lead-free soldering materials and offers high-resolution printing of solder paste bumps (<60 μm) and throughput (up to 10,000 pads/s). In this work, the laser-process conditions which allow control over the transfer of solder paste bumps and arrays, with form factors in line with the features of fine pitch PCBs, are investigated. The study of solder paste as a function of donor/receiver gap confirmed that controllable printing of bumps containing many microparticles is feasible for a gap < 100 μm from a donor layer thickness set at 100 and 150 μm. The transfer of solder bumps with resolution < 100 μm and solder micropatterns on different substrates, including PCB and silver pads, have been achieved. Finally, the successful operation of a LED interconnected to a pin connector bonded to a laser-printed solder micro-pattern was demonstrated.


Sign in / Sign up

Export Citation Format

Share Document