Temperature Cycling Induced Warpage of Packages with Embedded Copper Heatspreaders

2012 ◽  
Vol 2012 (DPC) ◽  
pp. 001579-001596
Author(s):  
Matthew Stahley ◽  
John Osenbach ◽  
Brenda Gogue ◽  
Byong Il Heo ◽  
Byung Cheol Lee ◽  
...  

Temperature cycling is an important reliability qualification test given the differences in thermal expansion coefficients for the materials in integrated circuit packages. In this work, leadfree Plastic-Ball-Grid-Array (PBGA) packages with embedded C1100 copper heatspreaders were exposed to standard qualification testing including MSL3 Moisture Preconditioning with leadfree reflows at 245C followed by Temperature Cycling (TC) with ranges of −55/+125C (TC-B) and 0/+125C (TC-K) per JEDEC JESD47. Electrical performance and package warpage were characterized on as-received, post-preconditioning, and post-TC devices. After 200 cycles TC-B, gross electrical open failures were found on a large percentage of devices in some package lots. Physical failure analysis of the open failures revealed severe package warpage, as high as 20mils on a 31mm package. The severe warpage was accompanied by delamination and sheared wires. In contrast other package lots did not show failures nor severe warpage (<6mils) even after 1000 cycles of TC-B. The same package and BOM was qualified with 225C reflows for eutectic lead/tin solder with no warpage or failures after TC. Detailed commonality studies revealed that the copper heatspreader lot used was the only definitive difference between “good” and “warped” package lots. It was found that for “warped” lots exposure to the leadfree reflow at 245C caused a significant reduction in the micro-hardness of the copper heatspreader, while there was minimal change in micro-hardness after exposure to leadfree reflow in the “good” lots. The mechanism for this change is explained by the softening temperature of the C1100 copper heatspreader which is well within the range of leadfree reflows. Above this softening temperature, re-crystallization and grain growth occur, which result in susceptibility to permanent warpage induced by temperature cycling. Control of this warpage is critical to qualifying temperature cycling performance for heatspreader PBGA packages, and this can be achieved through micro-hardness screening of the heatspreaders.

Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3117
Author(s):  
Sung-Jae Joo ◽  
Ji Eun Lee ◽  
Bong-Seo Kim ◽  
Bok-Ki Min

Mg2Si is a promising eco-friendly thermoelectric material, and Ni is suited for electrical contact on it. In this study, Bi-doped Mg2Si ingots with Ni contacts were fabricated by co-sintering, and thermal stability was investigated by long-time (500 h, 500 cycles) temperature cycling from 25 °C to a peak temperature (Th = 400 and 450 °C) in N2. The as-sintered Ni/Mg2Si interfacial region is a multilayer consisting of Mg3Bi2, a series of MgxSiyNiz ternary compounds (ω, ν, ζ, and η-phases), and MgNi2. In the complex microstructure, the MgNi2 / η-phase interface was vulnerable to stress-induced voiding at Th = 450 °C, which arises from the mismatch of the thermal expansion coefficients. Interfacial voiding was avoided by adding 10 mol% Ag in Ni, which is probably due to the suppression of vacancy migration by the Ag-containing 2nd phase formation at the MgNi2/η-phase interface.


2000 ◽  
Vol 15 (6) ◽  
pp. 1239-1242 ◽  
Author(s):  
M. Huang ◽  
Z. Suo ◽  
Q. Ma ◽  
H. Fujimoto

Layered materials are susceptible to failure upon temperature cycling. This paper describes an intriguing mechanism: cracking in a brittle layer caused by ratcheting in an adjacent ductile layer. For example, on a silicon die directly attached to an organic substrate, cracking often occurs in the silicon nitride film over aluminum pads. The silicon die and the organic substrate have different thermal expansion coefficients, inducing shear stresses at the die corners. Aided by cycling temperature, the shear stresses cause ratcheting in the aluminum pads. Incrementally, the stress relaxes in the aluminum pads and builds up in the overlaying silicon nitride film, leading to cracks.


Author(s):  
Karren L. More

Beta-SiC is an ideal candidate material for use in semiconductor device applications. Currently, monocrystalline β-SiC thin films are epitaxially grown on {100} Si substrates by chemical vapor deposition (CVD). These films, however, contain a high density of defects such as stacking faults, microtwins, and antiphase boundaries (APBs) as a result of the 20% lattice mismatch across the growth interface and an 8% difference in thermal expansion coefficients between Si and SiC. An ideal substrate material for the growth of β-SiC is α-SiC. Unfortunately, high purity, bulk α-SiC single crystals are very difficult to grow. The major source of SiC suitable for use as a substrate material is the random growth of {0001} 6H α-SiC crystals in an Acheson furnace used to make SiC grit for abrasive applications. To prepare clean, atomically smooth surfaces, the substrates are oxidized at 1473 K in flowing 02 for 1.5 h which removes ∽50 nm of the as-grown surface. The natural {0001} surface can terminate as either a Si (0001) layer or as a C (0001) layer.


2013 ◽  
Vol 646 ◽  
pp. 59-66 ◽  
Author(s):  
Arcady Zhukov ◽  
Margarita Churyukanova ◽  
Lorena Gonzalez-Legarreta ◽  
Ahmed Talaat ◽  
Valentina Zhukova ◽  
...  

We studied the effect ofthe magnetoelastic ansitropy on properties of nanostructured glass-coated microwires with soft magnetic behaviour (Finemet-type microwires of Fe70.8Cu1Nb3.1Si14.5B10.6, Fe71.8Cu1Nb3.1Si15B9.1 and Fe73.8Cu1Nb3.1Si13B9.1 compositions) and with granular structure (Cu based Co-Cu microwires). The magnetoelastic energy originated from the difference in thermal expansion coefficients of the glass and metallic alloy during the microwires fabrication, affected the hysteresis loops, coercivity and heat capacity of Finemet-type microwires. Hysteresis loops of all as-prepared microwires showed rectangular shape, typical for Fe-rich microwires. As expected, coercivity, HC, of as-prepared microwires increases with decreasing of the ratio ρ defined as the ratio between the metallic nucleus diameter, d to total microwire diameter, D. On the other hand we observed change of heat capacity in microwires with different ratio ρ. In the case of Co-Cu microwires ρ- ratio affected the structure and the giant magneto-resistance of obtained microwires.


1996 ◽  
Vol 445 ◽  
Author(s):  
Nickolaos Strifas ◽  
Aris Christou

AbstractThe reliability of plastic packaged integrated circuits was assessed from the point of view of interfacial mechanical integrity. It is shown that the effect of structural weaknesses caused by poor bonding, voids, microcracks or delamination may not be evident in the electrical performance characteristics, but may cause premature failure. Acoustic microscopy (C-SAM) was selected for nondestructive failure analysis of the plastic integrated circuit (IC) packages. Integrated circuits in plastic dual in line packages were initially subjected to temperature (25 °C to 85 °C) and humidity cycling (50 to 85 %) where each cycle was of one hour duration and for over 100 cycles and then analyzed. Delamination at the interfaces between the different materials within the package, which is a major cause of moisture ingress and subsequent premature package failure, was measured. The principal areas of delamination were found along the leads extending from the chip to the edge of the molded body and along the die surface itself. Images of the 3-D internal structure were produced that were used to determine the mechanism for a package failure. The evidence of corrosion and stress corrosion cracks in the regions of delamination was identified.


2003 ◽  
Vol 125 (4) ◽  
pp. 512-519 ◽  
Author(s):  
C. J. Liu ◽  
L. J. Ernst ◽  
G. Wisse ◽  
G. Q. Zhang ◽  
M. Vervoort

Interface delamination failure caused by thermomechanical loading and mismatch of thermal expansion coefficients and other material properties is one of the important failure modes occurring in electronic packages, thus a threat for package reliability. To solve this problem, both academic institutions and industry have been spending tremendous research effort in order to understand the inherent failure mechanisms and to develop advanced and reliable experimental and simulation methodologies, thus to be able to predict and to avoid interface delamination before physical prototyping. Various damage mechanisms can be involved and can result in interface delamination phenomena. These are not all sufficiently addressed and/or reported so far, probably because of the complexities caused by the occurrence of strong geometric and materials nonlinearities. One of the phenomena being insufficiently understood so far is the so-called buckling-driven delamination of thin metalic layers on ceramic substrates. This phenomenon will be discussed in the present paper.


2016 ◽  
Vol 30 (11) ◽  
pp. 1650127 ◽  
Author(s):  
Yi Ren ◽  
Wen Ma ◽  
Xiaoying Li ◽  
Jun Wang ◽  
Yu Bai ◽  
...  

The SOFC interconnect materials La[Formula: see text]Sr[Formula: see text]Cr[Formula: see text]O[Formula: see text] [Formula: see text]–[Formula: see text] were prepared using an auto-ignition process. The influences of Cr deficiency on their sintering, thermal expansion and electrical properties were investigated. All the samples were pure perovskite phase after sintering at 1400[Formula: see text]C for 4 h. The cell volume of La[Formula: see text]Sr[Formula: see text]Cr[Formula: see text]O[Formula: see text] decreased with increasing Cr deficient content. The relative density of the sintered bulk samples increased from 93.2% [Formula: see text] to a maximum value of 94.7% [Formula: see text] and then decreased to 87.7% [Formula: see text]. The thermal expansion coefficients of the sintered bulk samples were in the range of [Formula: see text]–[Formula: see text] (30–1000[Formula: see text]C), which are compatible with that of YSZ. Among the investigated samples, the sample with 0.02 Cr deficiency had a maximum conductivity of 40.4 Scm[Formula: see text] and the lowest Seebeck coefficient of 154.8 [Formula: see text]VK[Formula: see text] at 850[Formula: see text]C in pure He. The experimental results indicate that La[Formula: see text]Sr[Formula: see text]Cr[Formula: see text]O[Formula: see text] has the best properties and is much suitable for SOFC interconnect material application.


2001 ◽  
Vol 68 (6) ◽  
pp. 878-879 ◽  
Author(s):  
H.-L. Yeh ◽  
H.-Y. Yeh

In practical analysis, under a plane stress condition, a unidirectional lamina can be assumed with E2=E3 from geometrical symmetry consideration. However, from an academic point of view, it is interesting to study the case of a lamina with E2≠E3. In this paper the preliminary results of the physical phenomenon about the effect of different transverse moduli E2 and E3 on the through-thickness thermal expansion coefficients αz of quasi-isotropic composite laminates is presented.


Sign in / Sign up

Export Citation Format

Share Document