Electrical and Mechanical Performance of Quilt Packaging with Solder Paste by Pin Transfer

2012 ◽  
Vol 2012 (1) ◽  
pp. 000441-000446
Author(s):  
Quanling Zheng ◽  
M. Ashraf Khan ◽  
Alfred M. Kriman ◽  
Gary H. Bernstein

Electrical and mechanical performance of Quilt Packaging (QP), a 2D system-in-package chip-to-chip interconnection, is presented. QP employs contacts at the edges of integrated circuit dies along their vertical surfaces. Based on 3D HFSS simulations, the self-inductance of QP can be less than 0.01 nH, and the self-capacitance can be less than 0.034 pF due to the shortness of the interconnection path. QP interconnection using solder paste with pin transfer is presented, and mechanical reliability is evaluated. A new pull test system specifically designed for QP is presented. The pull force that causes failure in a set of edge interconnects totaling 3 mm width of nodules is about 658 gram-force for Sn63Pb37 and 953 gram-force for SAC305.

2012 ◽  
Vol 9 (4) ◽  
pp. 160-165 ◽  
Author(s):  
Quanling Zheng ◽  
M. Ashraf Khan ◽  
Alfred M. Kriman ◽  
Gary H. Bernstein

Electrical and mechanical performance of quilt packaging (QP), a 2D system-in-package chip-to-chip interconnection, is presented. QP employs contacts at the edges of integrated circuit dice along their vertical surfaces. Based on 3D HFSS simulations, the self-inductance of QP can be less than 100 pH, and the self-capacitance can be less than 34 fF due to the shortness of the interconnection path. QP interconnection using solder paste with pin transfer is presented, and mechanical reliability is evaluated. A new pull test system specifically designed for QP is presented. The pull force that causes failure in a set of edge interconnects totaling 3 mm width of nodules is about 658 g-force for Sn63Pb37 and 953 g-force for SAC305.


2017 ◽  
Vol 6 (1) ◽  
pp. 159-167 ◽  
Author(s):  
Takahiro Zushi ◽  
Hirotsugu Kojima ◽  
Hiroshi Yamakawa

Abstract. Plasma waves are important observational targets for scientific missions investigating space plasma phenomena. Conventional fast Fourier transform (FFT)-based spectrum plasma wave receivers have the disadvantages of a large size and a narrow dynamic range. This paper proposes a new type of FFT-based spectrum plasma wave receiver that overcomes the disadvantages of conventional receivers. The receiver measures and calculates the whole spectrum by dividing the observation frequency range into three bands: bands 1, 2, and 3, which span 1 Hz to 1 kHz, 1 to 10 kHz, and 10 to 100 kHz, respectively. To reduce the size of the receiver, its analog section was realized using application-specific integrated circuit (ASIC) technology, and an ASIC chip was successfully developed. The dimensions of the analog circuits were 4.21 mm  ×  1.16 mm. To confirm the performance of the ASIC, a test system for the receiver was developed using the ASIC, an analog-to-digital converter, and a personal computer. The frequency resolutions for bands 1, 2, and 3 were 3.2, 32, and 320 Hz, respectively, and the average time resolution was 384 ms. These frequency and time resolutions are superior to those of conventional FFT-based receivers.


2018 ◽  
Vol 2018 (1) ◽  
pp. 000613-000618
Author(s):  
Dave Saums ◽  
Tim Jensen ◽  
Carol Gowans ◽  
Seth Homer ◽  
Ron Hunadi

Abstract Semiconductor test and burn-in requirements for thermal interface materials (TIMs) are challenging, with difficult mechanical reliability requirements that are not found in other types of applications for these materials. To demonstrate the ability of certain newly-developed TIMs to not only provide suitable thermal performance for the device under test and meet these mechanical requirements, a contact cycling test has been devised in three phases for evaluating TIM mechanical performance and durability.


2016 ◽  
Vol 40 (5) ◽  
pp. 871-881
Author(s):  
Huang Xuemei ◽  
Zhang Lei’an ◽  
Tao Liming ◽  
Wei Xiuting

To carry on fatigue loading tests for wind turbine blades accurately, the self-synchronous vibration mechanism of loading system was investigated. Firstly, the mathematical model of vibration was deduced based on LaGrange Equation, thus the influence factors of self-synchronous vibration could be obtained. Then to study the influencing rules of the initial phase difference between loading equipment and blade, a simulating model was constructed to carry on the numerical simulation and it was found that when the driving frequency of the loading equipment was the same as the natural frequency of the blade, a different initial phase separation would generate different effect on self-synchronous vibration. Finally, an on-site fatigue test system was established to verify the accuracy of mathematical and simulation model mentioned above. It could be concluded that the test results were consistent with the simulating result. The research on the self-synchronous vibration performance of loading system for blade could supply a theory support for the sequent control of blade’s fatigue tests precisely.


Author(s):  
Pedro E. Ribeiro ◽  
Delfim F. Soares ◽  
Maria F. Cerqueira ◽  
Senhorinha F. Teixeira ◽  
Daniel A. Barros ◽  
...  

A common failure mode of electronic PCB’s is the appearance of cold solder joints between the component and PCB, during product life. This phenomenon is related to solder joint fatigue and is attributed mainly to the mismatch of the coefficients of thermal expansion (CTE) of component-solder-PCB assembly. Although some experiments show that newer lead-free tin-silver-copper (Sn-Ag-Cu, or SAC) solders perform better than the older SnPb ones, with today’s solder joint thickness decreasing and increasing working temperatures, among others, the stresses and strains due to temperature changes are growing, leading to limited fatigue life of the products. As fatigue life decreases with increasing plastic strain, creep occurrence should have significant impact, especially during thermal cycles. In order to improve mechanical properties, but also as an attempt to reduce maximum reflow cycle temperatures due to component damage and production costs, various SAC solder alloying additives are being considered to use in industrial production facilities. Solder paste producers are proposing new products based on new solder paste formulations, but the real life effects on thermo-mechanical performance aren’t well known at the moment. In this paper a dynamic mechanical analyser (DMA) is used to study the influence of Bismuth (Bi) addition, up to 5 wt %, on SAC405 solder paste, in terms of creep behaviour. Creep tests were made on three-point-bending configuration, isothermally at 30 °C, 50 °C and 75 °C, and three different stresses of 3, 5 and 9 MPa. The results shown not only a significant Bi concentration influence on creep behaviour but also a noticeable temperature dependence.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Javier Ricardo Pérez-Sánchez ◽  
Francisco Grandas

Postural instability in Parkinson’s disease (PD) is commonly assessed by the pull test. This clinical test may be biased by the variability of the pull force applied. Our objective was to study the postural responses elicited by reproducible pull forces in healthy subjects and PD patients at different stages of the disease. We performed a multimodal approach that included a systematic analysis of the pull force needed to reach the backward limit of stability (FBLoS) assessed by mechanically produced forces, the displacements of the center of pressure (CoP) recorded on a force platform, and the latencies and patterns of activation of the stabilizing muscles. Comparisons between groups were performed by univariate and multivariate statistical analyses. Sixty-four healthy subjects and 32 PD patients, 22 Hoehn–Yahr (H–Y) stages I-II and 10 H–Y stage III, were studied. In healthy subjects, FBLoS decreased with aging and was lower in females. Mean (SD) FBLoS was 98.1 (48.9) Newtons (N) in healthy subjects, 70.5 (39.8) N in PD patients H–Y stages I-II, and 37.7 (18.9) N in PD patients H–Y stage III. Compared to healthy subjects and when adjusted for age and gender, PD patients H–Y stages I-II exhibited the following: (a) a reduced FBLoS; (b) larger CoP displacements and higher velocities for the same applied force; and (c) combined ankle and hip strategies elicited by less intense pull forces. All of these abnormalities were more pronounced in H–Y stage III PD patients compared to H–Y stages I-II PD patients. In conclusion, patients in the early stages of PD already exhibit a degree of postural instability due to inefficient postural adjustments, and they can more easily be destabilized by small perturbations than healthy subjects. This balance impairment becomes more pronounced in more advanced PD. In the pull test, pull force to step back should be a variable to consider when testing balance in clinical practice.


2014 ◽  
Vol 644-650 ◽  
pp. 1107-1110
Author(s):  
Feng Qin Wang ◽  
Xiao Feng Lv ◽  
Yu Liu

Signal-oriented test is care for the signal process without regard of the specific instrument, while the self-test program of Automatic Test System has to test and verify the specific instrument. We put forward the Abbreviated Test Language for All Systems self-test program design and the implement method on GPTS3.1 software platform. Achieving results show that the method performs self-test well.


MRS Bulletin ◽  
1987 ◽  
Vol 12 (7) ◽  
pp. 66-72 ◽  
Author(s):  
J. Homeny ◽  
W.L. Vaughn

Whisker-reinforced ceramic matrix composites have recently received a great deal of attention for applications as high temperature structural materials in, for example, advanced heat engines and high temperature energy conversion systems. For applications requiring mechanical reliability, the improvements that can be realized in fracture strength and fracture toughness are of great interest. Of particular importance for optimizing the mechanical reliability of these composites is the effect of the whisker/matrix interfacial characteristics on the strengthening and toughening mechanisms. Whisker reinforcements are primarily utilized to prevent catastrophic brittle failure by providing processes that dissipate energy during crack propagation. The degree of energy dissipation depends on the nature of the whisker/matrix interface, which can be controlled largely by the matrix chemistry, the whisker surface chemistry, and the processing parameters.It is generally believed that a strong interfacial bond results in a composite exhibiting brittle behavior. These composites usually have good fracture strengths but low fracture toughnesses. If the interfacial bond is weak, the composite will not fail in a catastrophic manner due to the activation of various energy dissipation processes. These latter composites tend to have high fracture toughnesses and low fracture strengths. Generally, the interface should be strong enough to transfer the load from the matrix to the whiskers, but weak enough to fail preferentially prior to failure. Thus, local damage occurs without catastrophic failure. It is therefore necessary to control the interfacial chemistry and bonding in order to optimize the overall mechanical performance of the composites.


Author(s):  
Xi Liu ◽  
Margaret Simmons-Matthews ◽  
Kurt P. Wachtler ◽  
Suresh K. Sitaraman

Through-silicon via (TSV), being one of the key enabling technologies for three dimensional (3D) Integrated Circuit (IC) stacking, silicon interposer technology, and advanced wafer level packaging (WLP), has attracted tremendous interest throughout the semiconductor industry. However, limited work addresses TSV reliability issue, and most of the existing reliability studies focus on the thermo-mechanical performance of TSVs in a free-standing wafer, rather than in an integrated package. In this paper, three-dimensional thermomechanical Finite-Element (FE) models with TSVs in both free-standing wafers and 3D integrated packages have been built and analyzed. In addition, Design of Experiments (DOE) based approach has been used to understand the effect of various parameters. Results show that the selection of underfill materials between stacked dies is the most dominating design factor for TSV/microbump reliability.


Sign in / Sign up

Export Citation Format

Share Document