Effects of Silicon Wafer Bump Pad Structures on Solder and Cu Pillar Flip-Chip Reliability

2016 ◽  
Vol 2016 (1) ◽  
pp. 000100-000105
Author(s):  
Shirley Asoy ◽  
Scott Exon ◽  
Liping Zhu ◽  
Peter Moon ◽  
Michael Carroll ◽  
...  

Abstract Solder and Cu pillar flip-chip silicon die technologies have been widely used in chip to package mobile module products. During the early design phase, integrated circuit (IC) designers usually apply standard bump design rules, due to lack of information on the reliability of the metal layer stack-up with different bumping processes. However, module reliability data has demonstrated that the stack-up and thickness of the metal layers in a silicon die has a great effect on package stresses, especially for large area Cu pillar flip chip die. In this paper, the effects of bump pad structures on solder and Cu pillar bump reliability have been investigated. A 3D mechanical stress model was developed to compare and optimize various bump structures. A test vehicle with die and module was designed and assembled in a volume production environment. Assembly in-line data was collected and analyzed, and is presented in this paper. Reliability testing and failure analysis were performed to verify the failure modes. Guidelines for designing solder and Cu Pillar Flip-chip bump pad structures have been developed, and are presented in this paper.

2018 ◽  
Vol 2018 (1) ◽  
pp. 000173-000179
Author(s):  
Frank Kuechenmeister ◽  
Dirk Breuer ◽  
Holm Geisler ◽  
Bjoern Boehme ◽  
Kashi Vishwanath Machani ◽  
...  

Abstract This paper describes major contributing factors to the CPI risk and reveals the mitigation strategy successfully applied jointly by GLOBALFOUNDRIES as the silicon supplier and Qualcomm Technologies, Inc., as the customer responsible for packaging. This strategy involves thermo-mechanical modelling, data collection on wafer level using shear test to assess the BEoL-stability, Cu Pillar process development and optimization. The qualification of these process changes had been completed and implemented in volume production. The paper also discusses mechanical wafer level and thermo-mechanical package modeling approaches. A model has been applied to determine the critical factors on BEoL stress/strain during the flip-chip assembly reflow process. These factors include for instance the Cu Pillar bump geometry and stack up. The results of the modelling work were used to set up experiments to further mitigate CPI related failure modes in BEoL on the package level. GLOBALFOUNDRIES and Qualcomm Technologies, Inc., assessed Cu Pillar design related rules such as Cu Pillar diameter and height as well as the Cu Pillar stack up. Process improvements were carried out to reduce the undercut of the barrier underneath the Cu Pillar. The paper reveals how effectively an optimized Cu Pillar design and improved Cu Pillar processing can contribute to the risk mitigation of CPI failure modes in the BEoL for critical package designs and assembly processes with low margin against BEoL fracture during solder reflow. Furthermore, process improvements applied to enhance the BEoL stack strength were investigated and have been implemented in high-volume production. A strong correlation was established between data collected on wafer level to assess the BEoL strength and data collected on package level.


2018 ◽  
Author(s):  
Gwee Hoon Yen ◽  
Chong Hock Heng

Abstract Today, copper pillar bumping now in high volume production for mobile electronics is also a transformative technology for next generation flip chip [1] interconnects which offers advantages in many designs while meeting current and future requirements. With the continuous shrinking dimensions of semiconductor devices, the package’s design and size are approaching the dimensions of the singulated die. Moreover, failure analysis involving copper pillar packages would be the major challenges faced by analysts as copper pillar devices in nature hides its solder joints beneath its die causing obstruction in quality inspection as well as judging its solder joint strength. Chemical wet etch or deprocessing [2] by using potassium hydroxide (KOH) to remove all silicon die have disadvantages of over etching on silicon substrate and tin (Sn) surrounding the Cu pillar. Therefore, quality of sample preparation is critical and new methodology is needed.


Author(s):  
Shengmin Wen ◽  
Jason Goodelle ◽  
VanDee Moua ◽  
Kenny Huang ◽  
Chris Xiao

2012 ◽  
Vol 2012 (1) ◽  
pp. 000455-000463 ◽  
Author(s):  
Yasumitsu Orii ◽  
Kazushige Toriyama ◽  
Sayuri Kohara ◽  
Hirokazu Noma ◽  
Keishi Okamoto ◽  
...  

The electromigration behavior of 80 μm pitch solder capped Cu pillar bump interconnection on an organic carrier is studied and discussed. Recently the solder capped Cu pillar bump technology has been widely used in mobile applications as a peripheral ultra fine pitch flip chip interconnection technique. The solder capped Cu pillar bumps are formed on Al pads which are commonly used in wirebonding technique. It allows us an easy control of the space between the die and the substrate simply by varying the Cu pillar height. Since the control of the collapse of the solder bumps is not necessary, the technology is called the “C2 (Chip Connection)”. Solder capped Cu pillar bumps are connected to OSP surface treated Cu substrate pads on an organic substrate by reflow with a no-clean process, hence the C2 is a low cost ultra fine pitch flip chip interconnection technology. It is an ideal technology for the systems requiring fine pitch structures. In 2011, the EM tests were performed on 80 μm pitch solder capped Cu pillar bump interconnections and the effects of Ni barrier layers on the Cu pillars and the preformed intermetallic compound (IMC) layers on the EM tests were studied. The EM test conditions of the test vehicles were 7–10 kA/cm2 at 125–170°C. The Cu pillar height was 45 μm and the solder height was 25 μm. The solder composition was Sn-2.5Ag. Aged condition for pre-formed IMCs was 2,000 hours at 150°C. It was shown that the formation of the pre-formed IMC layers and the insertion of Ni barrier layers are effective in reducing the Cu atoms dissolution. In this report, it is studied that which of the IMC layers, Cu3Sn or Cu6Sn5, is more effective in preventing the Cu atom dissolution. The cross-sectional analyses of the joints after the 2000 hours of the test with 7kA/cm2 at 170°C were performed for this purpose. The relationship between the thickness of Cu3Sn IMC layer and the Cu migration is also studied by performing the current stress tests on the joints with controlled Cu3Sn IMC thicknesses. The samples were thermally aged prior to the tests at a higher temperature (200°C) and in a shorter time (10–50 hours) than the previous experiments. The cross-sectional analyses of the Sn-2.5Ag joints without pre-aging consisting mostly of Cu6Sn5, showed a significant Cu dissolution while the Cu dissolution was not detected for the pre-aged joints with thick Cu3Sn layers. A large number of Kirkendall voids were also observed in the joints without pre-aging. The current stress tests on the controlled Cu3Sn joints showed that Cu3Sn layer thickness of more than 1.5 μm is effective in reducing Cu dissolution in the joints.


Author(s):  
Byoung-Joon Kim ◽  
Gi-Tae Lim ◽  
Jaedong Kim ◽  
Kiwook Lee ◽  
Young-Bae Park ◽  
...  
Keyword(s):  

2011 ◽  
Vol 2011 (DPC) ◽  
pp. 002360-002376
Author(s):  
Guy Burgess ◽  
Anthony Curtis ◽  
Tom Nilsson ◽  
Gene Stout ◽  
Theodore G. Tessier

There is considerable interest in the semiconductor industry regarding Cu pillar bumping for finer pitch flip chip and 3D packaging applications. A common Cu Pillar method of production incorporates a combined Cu plated post topped with a plated solder pillar cap, usually of a Sn or SnAg alloy. Compared with this, a unique method of Cu pillar bump production developed at FlipChip International, LLC (FCI) creates the solder cap by applying and reflowing a solder paste on top of the plated Cu post. This method of production offers several benefits; the most important include a broader solder alloy selection, better alloy control, and improved overall pillar height uniformity. FCI has qualified a wide range of Cu pillar bump sizes, heights and shapes including Cu pillar bumps for fine pitch applications as low as 35um pitch (NANOPillarTM). FCI's Cu pillar bump structures in overmolded SiP have passed JEDEC 22-A104C board level thermal cycle testing, JEDEC J-STD-20A MLS 3@260C, as well as other board level corrosion and shock testing. FCI has demonstrated capping Cu pillar bumps with a broad range of solder alloys tailored to specific application requirements.


Author(s):  
Chung Yen Wu ◽  
Cheng Hsiao Wang ◽  
Kai Kuang Ho ◽  
Kuo Ming Chen ◽  
Po Chen Kuo ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document