scholarly journals Submergence sensitivity of durum wheat, bread wheat and barley at the germination stage

2016 ◽  
Vol 11 (2) ◽  
pp. 100 ◽  
Author(s):  
Iduna Arduini ◽  
Cecilia Orlandi ◽  
Laura Ercoli ◽  
Alessandro Masoni

Soil waterlogging at initial growth stages can cause heavy yield losses of winter cereals. Therefore, the screening for submergence tolerance traits in seeds of commercial varieties is of high concern worldwide. Ten Italian varieties of durum wheat (<em>Triticum durum</em> Desf.), bread wheat (<em>T. aestivum</em> L.) and barley (<em>Hordeum vulgare</em> L.) were investigated for their ability to germinate in submerged conditions and to recover after submergence periods of three to 15 days. Submergence prevented germination and decreased germinability, at rates that increased with duration of submergence. Sensitivity ranked in the order: barley &gt;durum wheat &gt;bread wheat. We related the higher sensitivity of barley to its slower germination and slightly higher leakage of electrolytes, whereas the percentage of abnormal seedlings was lower than in other species. It was less than 4%, compared to less than 15 and 8% in durum wheat and bread wheat, respectively. Wide varietal differences were found in all species. According to variety, after 6-day submergence, germinability ranged from 2 to 42% in barley, from 5 to 80% in durum wheat, and from 30 to 77% in bread wheat. Varieties with more than 40% seed survival were three, six and seven per species, in the same order. The differential submergence sensitivity of varieties indicates a potential to select for waterlogging tolerance within Italian genotypes of winter cereal crops.

2021 ◽  
pp. 67-72
Author(s):  
E. N. Shabolkina ◽  
N. V. Anisimkina

The development of bakery industry is possible due to the use of such non-traditional raw materials as durum wheat. The purpose of the current study was to estimate the effect of varietal traits of durum wheat when mixed with bread wheat according to the results of rheological parameters of dough, technological and bakery estimation of flour. There have been studied technological indicators of grain, rheological and physical parameters of dough, general bakery estimation. There has been established that the high gas-forming ability of durum wheat allows it to be used (30%) as bread wheat improver during baking. However, the positive effect was present not in all years of the study. There has been estimated an improvement effect due to mutual compensation of the missing components and complementarity of the bread and durum wheat varieties. There was found that in 2008, 2010 there was practically no improvement effect when durum wheat flour was added to the mixture in a ratio of 30:70%. There was established that in 2015 the maximum bread volume of 930 cm3 and a good bakery estimation (flat surface, oval shape, golden brown crust, as well as fine thin-walled porosity with elastic light crumb) were obtained by adding bread wheat varieties to durum wheat varieties, which during the year of the study there was formed weak grain (dilute of dough was 110 u.f.; valorigraphic number was 46 u.v.). In 2020, the varieties used in the mixtures of both spring bread and durum wheat were of high quality, and bakery estimation gave excellent indicators both in the control (the variety ‘Tulaykovskaya 108’ with 1300 cm3) and in the mixtures with 1140–1255 cm3; the appearance of bread and crumb in almost all variants had an excellent mark. The largest volume of bread, 1255 cm3, was obtained when the durum wheat variety ‘Bezenchukskaya Niva’ was added to the mixture. Adding durum wheat flour to the mixture in an amount of 30:70% when baking bread reduced its staleness by 6.5% relative to the control (bread wheat); bread remains fresh for a long time with an elastic, quickly regenerated crumb.


2021 ◽  
pp. 312-319
Author(s):  
Abdulwahid Saif ◽  
Aref Al-Shamiri ◽  
Abdulnour Shaher

Abstract M3 derived mutants from two bread wheat varieties, namely, 'Giza 186' and 'Saha 93', were screened for resistance to the rust Ug99 at two locations in Njoro (Kenya) and in Tihama (Yemen). At Tihama, two mutants of 'Giza 186' (G-M2-2010-1-28 and G-M2-2010-41-52) and four mutants of 'Saha 93' (S-M2-2010-16-12, S-M2-2010-21-13, S-M2-2010-22-14 and S-M2-2010-27-15) were seen to be resistant at both seedling and adult stages while their parents were resistant at seedling stage and susceptible at adult stage. In Kenya, the resistance score of the mutants was slightly different from those obtained at Tihama. The mutants G-M2-2010-1-28 and G-M2-2010-41-52 were stable in their level of resistance recorded at Tihama, but only two mutants of 'Saha 93' (S-M2-2010-16-12 and S-M2-2010-27-15) were resistant at both growth stages. S-M2-2010-22-14 and S-M2-2010-21-13 were resistant at the seedling stage while susceptible at adult stage. Further selection on these mutants for yield potential, agronomic performance and yellow rust disease resistance, as well as on selected mutants of both 'Giza 186' and 'Saha 93', at M5-M6 stages identified superior mutant lines compared with the two parents 'Saha 93' and 'Giza 186'. These included the line Erra-010-GM2w-41-52-40, which ranked first in yield (3768 kg/ha), followed by the lines Erra-010-SwM2-16-12-19, Erra-010-GM2w-1-28-18 and Erra-010-SwM2-22-14-6. Moreover, it can be concluded that Erra-010-GM2w-41-52-40 and Erra-010-SwM2-16-12-19 are highly recommended for their resistance to stem and yellow rust diseases as well as for yield potential and preference by farmers. Therefore, efforts are in progress to increase their seeds for dissemination over a wide range of farmers and wheat areas where rust diseases are an epidemic, and for registration of the lines as improved mutant varieties.


Plant Disease ◽  
2013 ◽  
Vol 97 (7) ◽  
pp. 977-982 ◽  
Author(s):  
G. J. Hollaway ◽  
M. L. Evans ◽  
H. Wallwork ◽  
C. B. Dyson ◽  
A. C. McKay

In southeastern Australia, Fusarium crown rot, caused by Fusarium culmorum or F. pseudograminearum, is an increasingly important disease of cereals. Because in-crop control options are limited, it is important for growers to know prior to planting which fields are at risk of yield loss from crown rot. Understanding the relationships between crown rot inoculum and yield loss would assist in assessing the risk of yield loss from crown rot in fields prior to planting. Thirty-five data sets from crown rot management experiments conducted in the states of South Australia and Victoria during the years 2005 to 2010 were examined. Relationships between Fusarium spp. DNA concentrations (inoculum) in soil samples taken prior to planting and disease development and grain yield were evaluated in seasons with contrasting seasonal rainfall. F. culmorum and F. pseudograminearum DNA concentrations in soil prior to planting were found to be positively related to crown rot expression (stem browning and whiteheads) and negatively related to grain yield of durum wheat, bread wheat, and barley. Losses from crown rot were greatest when rainfall during September and October (crop maturation) was below the long-term average. Losses from crown rot were greater in durum wheat than bread wheat and least in barley. Yield losses from F. pseudograminearum were similar to yield losses from F. culmorum. Yield loss patterns were consistent across experiments and between states; therefore, it is reasonable to expect that similar relationships will occur over broad geographic areas. This suggests that quantitative polymerase chain reaction technology and soil sampling could be powerful tools for assessing crown rot inoculum concentrations prior to planting and predicting the risk of yield loss from crown rot wherever this disease is an issue.


1998 ◽  
Vol 78 (4) ◽  
pp. 683-687 ◽  
Author(s):  
Dapeng Bai ◽  
D. R. Knott ◽  
Janice Zale

Triticum timopheevii (Zhuk.) Zhuk. is noted for its resistance to diseases including leaf and stem rust of wheat. Only one gene (Lr18) for leaf rust resistance has been transferred from T. timopheevii to bread wheat. The objectives of this work were to study the inheritance of leaf rust resistance in five accessions of T. timopheevii and to transfer genes for resistance into durum and bread wheats. A diallel set of crosses was made among five T. timopheevii accessions that gave a fleck infection type with an isolate of leaf rust race CBB. None of the F2 populations of the 10 crosses segregated for resistance, indicating that the five accessions all had at least one gene for resistance in common. Several accessions were crossed and backcrossed twice to durum and to bread wheat. At least three genes for leaf rust resistance were transferred to durum wheat and one to bread wheat. The gene transferred to bread wheat and one of those transferred to durum wheat conditioned good resistance to a set of 10 diverse races of leaf rust. Resistance conditioned by all three genes was dominant in durum wheat but the one gene was recessive in bread wheat. Monosomic analysis of the bread wheat line showed that the gene is on chromosome 1A. It should be useful in breeding for leaf rust resistance in both durum and bread wheat. Key words: Triticum timopheevii, leaf rust resistance, durum wheat, bread wheat


2012 ◽  
Vol 52 (10) ◽  
pp. 949 ◽  
Author(s):  
J. L. Jacobs ◽  
G. N. Ward

An experiment was undertaken over 2 years (2007–09) to determine the effect of intercropping forage peas with either forage winter wheat or triticale for whole-crop silage. Monocultures of triticale (T100), wheat (W100) and forage peas (P100) and plus cereal–pea combinations of 75% triticale : 25% pea (T75), 50% triticale : 50% pea (T50), 25% triticale : 75% pea (T25), 75% wheat : 25% pea (W75), 50% wheat : 50% pea (W50), 25% wheat : 75% pea (W25), with ratios based on sowing rate, were evaluated for DM yield and nutritional characteristics at a range of growth stages. It was hypothesised that an increase in the ratio of peas to cereal would not adversely affect DM yield and would have a positive impact on nutritive characteristics across a range of harvest times based on growth stages of the cereal component of mixes. In Year 1, at the boot stage of growth of cereals, P100 had a lower DM yield than W100 and all triticale-based treatments, while in Year 2 P100 had a lower DM yield than all other treatments. By the soft dough growth stage in Year 1, all triticale treatments except T25 had higher DM yields than P100 and in Year 2 P100 had a lower DM yield than all triticale treatments and W100. The crude protein (CP) concentration of P100 at the boot stage of growth was higher than T100, T75, T50, W100 and W50 in Year 1 and all treatments in Year 2. At soft dough, P100 had a higher CP concentration than all other treatments in both years, while T25 and W25 had higher CP concentrations than their respective monocultures. In Year 1 at soft dough, W100 had a lower estimated ME concentration than other wheat treatments and P100, while in Year 2, T50 and W50 had higher values than T100 and W100, respectively. Bi-cropping forage peas with winter cereal forage crops did not adversely affect DM yields at a range of different harvest times, but did not consistently and significantly improve nutritive characteristics. Despite relatively high sowing rates of forage peas, their total contribution in mixes with cereals to DM yield was low, indicating that their ability to compete with winter cereals under the high fertility conditions of the experiment was low. When grown as a monoculture peas tended to produce lower DM yields but had higher CP concentrations and a higher harvested CP/ha at the soft dough stage of growth. The timing of harvesting will affect DM yields and nutritive characteristics and can be manipulated depending upon the end use of the feed grown and also to allow greater flexibility in the sowing of subsequent forages. Consideration should also be given to the growing of monocultures of winter cereals and forage peas and developing systems to mix during ensiling to capture both DM yield potential and optimum nutritive characteristics.


2021 ◽  
Vol 12 ◽  
Author(s):  
Arianna Latini ◽  
Fabio Fiorani ◽  
Patrizia Galeffi ◽  
Cristina Cantale ◽  
Annamaria Bevivino ◽  
...  

This study aims to highlight the major effects of biochar incorporation into potting soil substrate on plant growth and performance in early growth stages of five elite Italian varieties of durum wheat (Triticum durum). The biochars used were obtained from two contrasting feedstocks, namely wood chips and wheat straw, by gasification under high temperature conditions, and were applied in a greenhouse experiment either as pure or as nutrient-activated biochar obtained by incubation with digestate. The results of the experiment showed that specific genotypes as well as different treatments with biochar have significant effects on plant response when looking at shoot traits related to growth. The evaluated genotypes could be clustered in two main distinct groups presenting, respectively, significantly increasing (Duilio, Iride, and Saragolla varieties) and decreasing (Marco Aurelio and Grecale varieties) values of projected shoot system area (PSSA), fresh weight (FW), dry weight (DW), and plant water loss by evapotranspiration (ET). All these traits were correlated with Pearson correlation coefficients ranging from 0.74 to 0.98. Concerning the treatment effect, a significant alteration of the mentioned plant traits was observed when applying biochar from wheat straw, characterized by very high electrical conductivity (EC), resulting in a reduction of 34.6% PSSA, 43.2% FW, 66.9% DW, and 36.0% ET, when compared to the control. Interestingly, the application of the same biochar after nutrient spiking with digestate determined about a 15–30% relief from the abovementioned reduction induced by the application of the sole pure wheat straw biochar. Our results reinforce the current basic knowledge available on biological soil amendments as biochar and digestate.


2015 ◽  
Vol 66 (2) ◽  
pp. 122 ◽  
Author(s):  
G. D. Schwenke ◽  
S. R. Simpfendorfer ◽  
B. C. Y. Collard

During the 2007 winter cropping season in Australia, severe leaf-spotting (necrosis) symptoms resembling chloride (Cl–) deficiency found in North America were reported in the newly released durum wheat variety Jandaroi. Testing for bacterial, fungal and viral pathogens all proved negative. Four Australian durum and four Australian bread wheat varieties were grown, along with a North American variety of each, in a glasshouse experiment using a sterile sand–vermiculite mix and nutrient solutions containing 0 (nil), 0.5, 1.0 or 2.0 mm Cl–. When grown in the nil Cl– solution, all durum and some bread wheat varieties produced leaf-spotting symptoms the same as observed in the field. Nil Cl– also delayed flowering, reduced biomass, decreased grain size, and depressed grain yield in most durum and bread wheat varieties. In field experiments, additions of Cl– fertiliser as KCl at sowing provided no biomass or yield response from a range of wheat varieties, probably because the plants accessed sufficient Cl– from below 0.9 m depth in the soil. Chloride concentrations in whole-plant tissue sampled at head emergence suggested that unfertilised plants were borderline deficient in Cl– according to critical values established in North America. An in-crop foliar Cl– application experiment showed linear uptake of applied Cl–, as MgCl2, until the end of tillering. However, because leaf-spotting symptoms typically appear only after tillering, it is not possible to correct Cl– deficiency by adding Cl– fertiliser to the affected crop after symptoms appear. Managing Cl– in susceptible crops therefore needs to be preventative rather than curative. Among commercial varieties, Jandaroi was highly sensitive to low Cl–, Caparoi was moderately sensitive, and EGA Bellaroi was tolerant. Several elite durum breeding lines grown in 2010 showed considerably reduced leaf spotting compared with Jandaroi under low Cl– conditions, indicating potential for conventional breeding to reduce the potential impact of low Cl– soils on durum production in northern Australia.


2001 ◽  
Vol 81 (4) ◽  
pp. 611-620 ◽  
Author(s):  
B. A. Marchylo ◽  
J. E. Dexter ◽  
F. R. Clarke ◽  
J. M. Clarke ◽  
K. R. Preston

Fifty-four durum wheat (Triticum durum) genotypes entered into the 1995, 1996 and 1997 Co-operative Tests were evaluated for gluten strength characteristics using the sodium dodecyl sulphate (SDS) sedimentation test, the gluten index (GI) test, and physical dough tests including farinograph (high and low adsorption), mixograph, alveograph and extensigraph. Baking quality was evaluated for bread prepared by the Canadian short process (CSP), a short mechanical dough mixing process, and pasta quality was evaluated for spaghetti dried at both low (40°C) and high (70°C) temperatures. The effect of genotype on physical dough measurements, baking quality and spaghetti cooking quality was then determined. SDS sedimentation, GI, pasta dough farinograph (low absorption), bread dough farinograph (high absorption), extensigraph and alveograph measurements were interrelated. When baked by the CSP, the strongest genotypes exhibited mixing times and mixing energies similar to or greater than good quality bread wheat (Triticum aestivum). Although loaf volume (LV) was positively correlated to gluten strength indicators, the strongest genotypes still exhibited only about 85% of the LV expected of good-quality bread wheat of comparable protein content. Baking quality however, was not related to pasta cooking quality, and, therefore, there is potential to breed for dual-purpose durum cultivars, which combine improved baking properties and good pasta cooking quality. Key words: Durum wheat, bread making quality, gluten strength, physical dough properties, pasta cooking quality


Author(s):  
Ezio Riggi ◽  
Danilo Scordia ◽  
Concetta Foti Cuzzola ◽  
Giorgio Testa ◽  
Salvatore L. Cosentino

In the present study, a two-year field trial was carried out with the aim to evaluate daylength and air temperature effects on leaf appearance and related rates in two durum wheat (Triticum durum Desf.), two bread wheat (Triticum aestivum L.) and two barley (Hordeum vulgare L.) cultivars, using six different sowing dates (SD). Significant effects of SD on final main stem leaf number (FLN), thermal leaf appearance rate (TLAR), daily leaf appearance rate (DLAR) and phyllochron (PhL) were found. Cultivars resulted inversely correlated to mean air temperature in the interval emergence - fifth leaf full expansion (E-V). Linear response of leaf number over days after sowing was shown for all SD and cultivars, with R2 higher than 0.95. FLN linearly decreased from the first to the last SD for durum wheat, while more variable behaviour was observed in bread wheat. TLAR and DLAR showed a linear increment of the rate from the first to the last SD in durum wheat, while did not for bread wheat and barley. PhL in durum wheat decreased from the first to the last SD. Barley and bread wheat showed the highest values on those SDs which did not reach flowering. The increase of TLAR was affected by photoperiod and photothermal units in durum wheat, while by temperatures only in barley and bread wheat. Present results might find practical application in the improvement of phenology simulation models for durum wheat, bread wheat and barley grown in Mediterranean area in absence of water and nutrient stress.


2014 ◽  
Vol 65 (1) ◽  
pp. 27 ◽  
Author(s):  
Mike Sissons ◽  
Denise Pleming ◽  
Benedetta Margiotta ◽  
Maria Grazia D'Egidio ◽  
Domenico Lafiandra

Durum wheat (Triticum turgidum ssp. durum) is typically used to produce pasta. In some parts of the world, it is used to make bread but with inferior loaf volume and texture compared with common wheat bread. This study describes the effect on technological properties of pasta and bread made from durum wheat cv. Svevo (recurrent parent (S), HMW-GS null, 7+8) and two isogenic genotypes carrying pairs of additional subunits 5+10 (S 5+10) or 2+12 (S 2+12), normally present at the Glu-D1 locus in bread wheat. The semolina was re-ground to flour, mixed in various proportions with bakers flour and used to prepare loaves. The dough properties of the S 5+10 line were markedly different from Svevo, having over-strong, stable dough, low wet gluten and elasticity; S 2+12 also displayed stronger dough. Pasta prepared from these genotypes showed lower cooked firmness (adjusted for protein differences), ranked Svevo > S 5+10 = S 2+12. There were no other differences in pasta cooking quality. Bread loaf volume and loaf score decreased as more bakers flour was replaced by durum flour, but the decline varied with the genetic material and dosage. The greatest reduction in loaf volume occurred using S 5+10 and the least with S 2+12, which was similar to Svevo. Bake score was reduced with S 5+10 only. The best loaf was made using Svevo. This work shows that it is possible to manipulate the processing properties of pasta and durum–bread-wheat blends by altering the glutenin subunit composition. This represents an efficient tool to finely manipulate gluten quality in durum wheat.


Sign in / Sign up

Export Citation Format

Share Document