scholarly journals The role of gut microbiome in the pathogenesis of psoriasis and the therapeutic effects of probiotics

2019 ◽  
Vol 8 (11) ◽  
pp. 3496 ◽  
Author(s):  
YahyaA Alzahrani ◽  
DalalI Alesa ◽  
HaidarM Alshamrani ◽  
DaniaN Alamssi ◽  
NadaS Alzahrani ◽  
...  
Author(s):  
Xueling Zhu ◽  
Bo Li ◽  
Pengcheng Lou ◽  
Tingting Dai ◽  
Yang Chen ◽  
...  

AbstractMany recent studies have shown that the gut microbiome plays important roles in human physiology and pathology. Also, microbiome-based therapies have been used to improve health status and treat diseases. In addition, aging and neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease, have become topics of intense interest in biomedical research. Several researchers have explored the links between these topics to study the potential pathogenic or therapeutic effects of intestinal microbiota in disease. But the exact relationship between neurodegenerative diseases and gut microbiota remains unclear. As technology advances, new techniques for studying the microbiome will be developed and refined, and the relationship between diseases and gut microbiota will be revealed. This article summarizes the known interactions between the gut microbiome and neurodegenerative diseases, highlighting assay techniques for the gut microbiome, and we also discuss the potential therapeutic role of microbiome-based therapies in diseases.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Guojun Wu ◽  
Naisi Zhao ◽  
Chenhong Zhang ◽  
Yan Y. Lam ◽  
Liping Zhao

AbstractTo demonstrate the causative role of gut microbiome in human health and diseases, we first need to identify, via next-generation sequencing, potentially important functional members associated with specific health outcomes and disease phenotypes. However, due to the strain-level genetic complexity of the gut microbiota, microbiome datasets are highly dimensional and highly sparse in nature, making it challenging to identify putative causative agents of a particular disease phenotype. Members of an ecosystem seldomly live independently from each other. Instead, they develop local interactions and form inter-member organizations to influence the ecosystem’s higher-level patterns and functions. In the ecological study of macro-organisms, members are defined as belonging to the same “guild” if they exploit the same class of resources in a similar way or work together as a coherent functional group. Translating the concept of “guild” to the study of gut microbiota, we redefine guild as a group of bacteria that show consistent co-abundant behavior and likely to work together to contribute to the same ecological function. In this opinion article, we discuss how to use guilds as the aggregation unit to reduce dimensionality and sparsity in microbiome-wide association studies for identifying candidate gut bacteria that may causatively contribute to human health and diseases.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 782
Author(s):  
Sona Ciernikova ◽  
Michal Mego ◽  
Michal Chovanec

Chemotherapy, targeting not only malignant but also healthy cells, causes many undesirable side effects in cancer patients. Due to this fact, long-term cancer survivors often suffer from late effects, including cognitive impairment and cardiovascular toxicity. Chemotherapy damages the intestinal mucosa and heavily disrupts the gut ecosystem, leading to gastrointestinal toxicity. Animal models and clinical studies have revealed the associations between intestinal dysbiosis and depression, anxiety, pain, impaired cognitive functions, and cardiovascular diseases. Recently, a possible link between chemotherapy-induced gut microbiota disruption and late effects in cancer survivors has been proposed. In this review, we summarize the current understanding of preclinical and clinical findings regarding the emerging role of the microbiome and the microbiota–gut–brain axis in chemotherapy-related late effects affecting the central nervous system (CNS) and heart functions. Importantly, we provide an overview of clinical trials evaluating the relationship between the gut microbiome and cancer survivorship. Moreover, the beneficial effects of probiotics in experimental models and non-cancer patients with neurocognitive disorders and cardiovascular diseases as well as several studies on microbiota modulations via probiotics or fecal microbiota transplantation in cancer patients are discussed.


2021 ◽  
Vol 22 (6) ◽  
pp. 3059
Author(s):  
Corrado Pelaia ◽  
Cecilia Calabrese ◽  
Eugenio Garofalo ◽  
Andrea Bruni ◽  
Alessandro Vatrella ◽  
...  

Among patients suffering from coronavirus disease 2019 (COVID-19) syndrome, one of the worst possible scenarios is represented by the critical lung damage caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-induced cytokine storm, responsible for a potentially very dangerous hyperinflammatory condition. Within such a context, interleukin-6 (IL-6) plays a key pathogenic role, thus being a suitable therapeutic target. Indeed, the IL-6-receptor antagonist tocilizumab, already approved for treatment of refractory rheumatoid arthritis, is often used to treat patients with severe COVID-19 symptoms and lung involvement. Therefore, the aim of this review article is to focus on the rationale of tocilizumab utilization in the SARS-CoV-2-triggered cytokine storm, as well as to discuss current evidence and future perspectives, especially with regard to ongoing trials referring to the evaluation of tocilizumab’s therapeutic effects in patients with life-threatening SARS-CoV-2 infection.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 767
Author(s):  
Courtney Davis ◽  
Sean I. Savitz ◽  
Nikunj Satani

Ischemic stroke is a debilitating disease and one of the leading causes of long-term disability. During the early phase after ischemic stroke, the blood-brain barrier (BBB) exhibits increased permeability and disruption, leading to an influx of immune cells and inflammatory molecules that exacerbate the damage to the brain tissue. Mesenchymal stem cells have been investigated as a promising therapy to improve the recovery after ischemic stroke. The therapeutic effects imparted by MSCs are mostly paracrine. Recently, the role of extracellular vesicles released by these MSCs have been studied as possible carriers of information to the brain. This review focuses on the potential of MSC derived EVs to repair the components of the neurovascular unit (NVU) controlling the BBB, in order to promote overall recovery from stroke. Here, we review the techniques for increasing the effectiveness of MSC-based therapeutics, such as improved homing capabilities, bioengineering protein expression, modified culture conditions, and customizing the contents of EVs. Combining multiple techniques targeting NVU repair may provide the basis for improved future stroke treatment paradigms.


Author(s):  
Yue Zhao ◽  
Yuxia Liu ◽  
Shuang Li ◽  
Zhaoyun Peng ◽  
Xiantao Liu ◽  
...  

Abstract Background Lung cancer is the leading cause of cancer-related deaths worldwide (Ferlay et al., Int J Cancer 136:E359–386, 2015). In addition, lung cancer is associated with the highest mortality among all cancer types (Wu et al., Exp Ther Med 16:3004–3010, 2018). Previous studies report that microbiota play an important role in lung cancer. Notably, changes in lung and gut microbiota, are associated with progression of lung cancer. Several studies report that lung and gut microbiome promote lung cancer initiation and development by modulating metabolic pathways, inhibiting the function of immune cells, and producing pro-inflammatory factors. In addition, some factors such as microbiota dysbiosis, affect production of bacteriotoxins, genotoxicity and virulence effect, therefore, they play a key role in cancer progression. These findings imply that lung and gut microbiome are potential markers and targets for lung cancer. However, the role of microbiota in development and progression of lung cancer has not been fully explored. Purpose The aim of this study was to systemically review recent research findings on relationship of lung and gut microbiota with lung cancer. In addition, we explored gut–lung axis and potential mechanisms of lung and gut microbiota in modulating lung cancer progression. Conclusion Pulmonary and intestinal flora influence the occurrence, development, treatment and prognosis of lung cancer, and will provide novel strategies for prevention, diagnosis, and treatment of lung cancer.


Author(s):  
Nayara Pestana‐Oliveira ◽  
David B. Nahey ◽  
Rochelle Hartson ◽  
Bonnie Weber ◽  
Timothy J. Johnson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document