scholarly journals The Relationship Between the Gut Microbiome and Neurodegenerative Diseases

Author(s):  
Xueling Zhu ◽  
Bo Li ◽  
Pengcheng Lou ◽  
Tingting Dai ◽  
Yang Chen ◽  
...  

AbstractMany recent studies have shown that the gut microbiome plays important roles in human physiology and pathology. Also, microbiome-based therapies have been used to improve health status and treat diseases. In addition, aging and neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease, have become topics of intense interest in biomedical research. Several researchers have explored the links between these topics to study the potential pathogenic or therapeutic effects of intestinal microbiota in disease. But the exact relationship between neurodegenerative diseases and gut microbiota remains unclear. As technology advances, new techniques for studying the microbiome will be developed and refined, and the relationship between diseases and gut microbiota will be revealed. This article summarizes the known interactions between the gut microbiome and neurodegenerative diseases, highlighting assay techniques for the gut microbiome, and we also discuss the potential therapeutic role of microbiome-based therapies in diseases.

Author(s):  
Ghada Araji ◽  
Julian Maamari ◽  
Fatima Ali Ahmad ◽  
Rana Zareef ◽  
Patrick Chaftari ◽  
...  

ABSTRACT The discovery of immune checkpoint inhibitors (ICIs) has revolutionized the care of cancer patients. However, the response to ICI therapy exhibits substantial interindividual variability. Efforts have been directed to identify biomarkers that predict the clinical response to ICIs. In recent years, the gut microbiome has emerged as a critical player that influences the efficacy of immunotherapy. An increasing number of studies have suggested that the baseline composition of a patient's gut microbiota and its dysbiosis are correlated with the outcome of cancer immunotherapy. This review tackles the rapidly growing body of evidence evaluating the relationship between the gut microbiome and the response to ICI therapy. Additionally, this review highlights the impact of antibiotic-induced dysbiosis on ICI efficacy and discusses the possible therapeutic interventions to optimize the gut microbiota composition to augment immunotherapy efficacy.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Guojun Wu ◽  
Naisi Zhao ◽  
Chenhong Zhang ◽  
Yan Y. Lam ◽  
Liping Zhao

AbstractTo demonstrate the causative role of gut microbiome in human health and diseases, we first need to identify, via next-generation sequencing, potentially important functional members associated with specific health outcomes and disease phenotypes. However, due to the strain-level genetic complexity of the gut microbiota, microbiome datasets are highly dimensional and highly sparse in nature, making it challenging to identify putative causative agents of a particular disease phenotype. Members of an ecosystem seldomly live independently from each other. Instead, they develop local interactions and form inter-member organizations to influence the ecosystem’s higher-level patterns and functions. In the ecological study of macro-organisms, members are defined as belonging to the same “guild” if they exploit the same class of resources in a similar way or work together as a coherent functional group. Translating the concept of “guild” to the study of gut microbiota, we redefine guild as a group of bacteria that show consistent co-abundant behavior and likely to work together to contribute to the same ecological function. In this opinion article, we discuss how to use guilds as the aggregation unit to reduce dimensionality and sparsity in microbiome-wide association studies for identifying candidate gut bacteria that may causatively contribute to human health and diseases.


Author(s):  
Yue Zhao ◽  
Yuxia Liu ◽  
Shuang Li ◽  
Zhaoyun Peng ◽  
Xiantao Liu ◽  
...  

Abstract Background Lung cancer is the leading cause of cancer-related deaths worldwide (Ferlay et al., Int J Cancer 136:E359–386, 2015). In addition, lung cancer is associated with the highest mortality among all cancer types (Wu et al., Exp Ther Med 16:3004–3010, 2018). Previous studies report that microbiota play an important role in lung cancer. Notably, changes in lung and gut microbiota, are associated with progression of lung cancer. Several studies report that lung and gut microbiome promote lung cancer initiation and development by modulating metabolic pathways, inhibiting the function of immune cells, and producing pro-inflammatory factors. In addition, some factors such as microbiota dysbiosis, affect production of bacteriotoxins, genotoxicity and virulence effect, therefore, they play a key role in cancer progression. These findings imply that lung and gut microbiome are potential markers and targets for lung cancer. However, the role of microbiota in development and progression of lung cancer has not been fully explored. Purpose The aim of this study was to systemically review recent research findings on relationship of lung and gut microbiota with lung cancer. In addition, we explored gut–lung axis and potential mechanisms of lung and gut microbiota in modulating lung cancer progression. Conclusion Pulmonary and intestinal flora influence the occurrence, development, treatment and prognosis of lung cancer, and will provide novel strategies for prevention, diagnosis, and treatment of lung cancer.


2020 ◽  
Vol 22 (1) ◽  
pp. 199
Author(s):  
Na Young Lee ◽  
Ki Tae Suk

Liver cirrhosis is one of the most prevalent chronic liver diseases worldwide. In addition to viral hepatitis, diseases such as steatohepatitis, autoimmune hepatitis, sclerosing cholangitis and Wilson’s disease can also lead to cirrhosis. Moreover, alcohol can cause cirrhosis on its own and exacerbate chronic liver disease of other causes. The treatment of cirrhosis can be divided into addressing the cause of cirrhosis and reversing liver fibrosis. To this date, there is still no clear consensus on the treatment of cirrhosis. Recently, there has been a lot of interest in potential treatments that modulate the gut microbiota and gut-liver axis for the treatment of cirrhosis. According to recent studies, modulation of the gut microbiome by probiotics ameliorates the progression of liver disease. The precise mechanism for relieving cirrhosis via gut microbial modulation has not been identified. This paper summarizes the role and effects of the gut microbiome in cirrhosis based on experimental and clinical studies on absorbable antibiotics, probiotics, prebiotics, and synbiotics. Moreover, it provides evidence of a relationship between the gut microbiome and liver fibrosis.


2021 ◽  
Vol 75 ◽  
pp. 283-291
Author(s):  
Agata Janczy ◽  
Magdalena Landowska ◽  
Zdzisław Kochan

Anorexia nervosa (AN) is described as an eating disorder, which is characterized by malnutrition, a fear of gaining body mass, and a disturbed self-body image. This disease is dependent on biological, psychological and socio-cultural factors. Among the various biological factors, the importance of intestinal microbiota has recently attracted much attention. Identification of the gut microbiota dysbiosis in patients with AN has opened new and promising research directions. Recent observations focus in particular on the association between intestinal microorganisms and the occurrence of functional gastrointestinal disorders associated with anorexia, anxiety and depression, as well as the regulation of eating habits. The composition of the gut microbiota differs between patients with AN and individuals with normal body mass. This is due to the incorrect diet of patients; on the other hand, there is growing interest in the role of intestinal microbiota in the pathogenesis of AN, its changes through re-nutrition practices, and in particular the modulation of intestinal microbiological composition by means of nutritional interventions or the use of preand probiotics as standard supplements therapy of eating disorders. There is a need for further research about the microbiome - intestine - brain axis. Furthermore, consequences of changes in dietary habits as part of AN treatment are also unknown. However, better knowledge about the relationship between the gut microbiome and the brain can help improve the treatment of this disorder. This review aims to present the current knowledge about the potential role of intestinal microbiota in the pathogenesis, course and treatment of AN.


2022 ◽  
Vol 8 ◽  
Author(s):  
Shuangyue Li ◽  
Georgios Kararigas

There has been a recent, unprecedented interest in the role of gut microbiota in host health and disease. Technological advances have dramatically expanded our knowledge of the gut microbiome. Increasing evidence has indicated a strong link between gut microbiota and the development of cardiovascular diseases (CVD). In the present article, we discuss the contribution of gut microbiota in the development and progression of CVD. We further discuss how the gut microbiome may differ between the sexes and how it may be influenced by sex hormones. We put forward that regulation of microbial composition and function by sex might lead to sex-biased disease susceptibility, thereby offering a mechanistic insight into sex differences in CVD. A better understanding of this could identify novel targets, ultimately contributing to the development of innovative preventive, diagnostic and therapeutic strategies for men and women.


2019 ◽  
Vol 8 (11) ◽  
pp. 3496 ◽  
Author(s):  
YahyaA Alzahrani ◽  
DalalI Alesa ◽  
HaidarM Alshamrani ◽  
DaniaN Alamssi ◽  
NadaS Alzahrani ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Safa Salim ◽  
Ayesha Banu ◽  
Amira Alwa ◽  
Swetha B. M. Gowda ◽  
Farhan Mohammad

AbstractThe idea that alterations in gut-microbiome-brain axis (GUMBA)-mediated communication play a crucial role in human brain disorders like autism remains a topic of intensive research in various labs. Gastrointestinal issues are a common comorbidity in patients with autism spectrum disorder (ASD). Although gut microbiome and microbial metabolites have been implicated in the etiology of ASD, the underlying molecular mechanism remains largely unknown. In this review, we have summarized recent findings in human and animal models highlighting the role of the gut-brain axis in ASD. We have discussed genetic and neurobehavioral characteristics of Drosophila as an animal model to study the role of GUMBA in ASD. The utility of Drosophila fruit flies as an amenable genetic tool, combined with axenic and gnotobiotic approaches, and availability of transgenic flies may reveal mechanistic insight into gut-microbiota-brain interactions and the impact of its alteration on behaviors relevant to neurological disorders like ASD.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Maike Willers ◽  
Dorothee Viemann

Abstract Colonization of the intestine with commensal bacteria is known to play a major role in the maintenance of human health. An altered gut microbiome is associated with various ensuing diseases including respiratory diseases. Here, we summarize current knowledge on the impact of the gut microbiota on airway immunity with a focus on consequences for the host defense against respiratory infections. Specific gut commensal microbiota compositions and functions are depicted that mediate protection against respiratory infections with bacterial and viral pathogens. Lastly, we highlight factors that have imprinting effects on the establishment of the gut microbiota early in life and are potentially relevant in the context of respiratory infections. Deepening our understanding of these relationships will allow to exploit the knowledge on how gut microbiome maturation needs to be modulated to ensure lifelong enhanced resistance towards respiratory infections.


Author(s):  
Khrystyna Kvit ◽  
Viacheslav Kharchenko

 Researchers have studied the connection between cholesterol and microbiota for a long time. The results of widely published data demonstrate that the relationship between the lipid balance of the blood and the composition of the intestinal microbiota is apparent. The oblective of this study was, we tried to find the path through which this connection is carried out. Furthermore, the aim was to analyze the studies, which demonstrate the decrease of blood lipids as the result of different prebiotics and probiotics prescribtion. Also, the screening of different data from previous years was done for comparing the changes in the pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document