scholarly journals Sorption studies of Cd and Cu on Brazilian alluvial soils

Author(s):  
Vitor Hugo de Oliveira Barros ◽  
Artur Paiva Coutinho ◽  
Adriana Thays Araújo Alves ◽  
Severino Martins dos Santos Neto ◽  
Fernando Xavier de Assis ◽  
...  

The Local Production Arrangement, located in the Pernambuco’s Agreste state, has been significantly developing the region's economy. Despite its importance, industrial activity has caused relevant environmental concerns regarding the disposal of textile effluents, especially from industrial laundries. This waste is made up of many chemicals, and among them are various types of heavy metals. The evaluation of the sorption behavior of contaminant transport mechanisms such as heavy metals is essential to assess the risk of contamination of alluvial aquifers. This study evaluated the sorption of heavy metals (Cu and Cd) in an alluvial sediment deposit in the Capibaribe River. Kinetics and isotherm experiments allowed the analyses of Cu and Cd sorption. Kinetics sorption showed an equilibrium tendency after 16 h for Cu and 18 h for Cd and was better described by a pseudo-second order model. The isotherm data were adjusted to the Linear, Freundlich and Langmuir models. Both linear and Freundlich models satisfactorily described sorption isotherms for the two pollutants. The metals in the study represent a risk of contamination of the groundwater of alluvial aquifers, mainly due to physicochemical attributes of the soil, such as high sand content (85%), low MO (2.1 g kg-1) and alkaline pH (8.2). The environmental conditions decrease absorption and facilitate metal mobility, greatly increasing the environmental risks inherent in pollutant leaching. Cu showed a higher affinity with the soil studied in all assays performed compared with the results of the tests for Cd.

2021 ◽  
pp. 47-64
Author(s):  
Karina Il'darovna Shaykhiyeva ◽  
Sergey Vladimirovich Fridland ◽  
Svetlana Vasil'yevna Sverguzova

Was reported literature findings of domestic and foreign articles about using of biomass components (leaves, straw, pods, seeds) and wastes of beans (Phaseolus vulgaris) and peas (Pisum sativum) pods shells processing as sorption material for pollutants (metals ions, colorants) removing from water environments. Concise literature findings about Pisum sativum and Phaseolus vulgaris plant structure, cultivation value, and chemical composition of some biomass components are described. Was revealed that composition of beans and peas pods has big amount of proteins, that can provide removing of metals ions such as (Cd(II), Co(II), Cr(III) и Cr(VI), Cu(II), Fe(III), Mo(VI), Ni(II), Pb(II), Sb(III) и Sb(V), Zn(II)) from water environments. Was showed  the possibility of sorption characteristics increase for pollutants by Phaseolus vulgaris and Pisum sativum biomass treatment with different chemical reagents. Was revealed that pollutants sorption isotherms of wastes and biomass of considered legumes are described mostly by Langmuir model than by Freundlich model. The kinetic of process mostly match to pseudo-second order model. It is shown that using of seeds and pods shells of legumes is prospectively for removing of heavy metals ions and suspended particles from water. Was proposed to use charcoal, which was gotten by peas pods carbonization for removing of heavy metals ions from water environments. Concluded, that using of legumes pods extracts is more effective for clearing water environments from heavy metals ions.


2018 ◽  
Vol 10 (7) ◽  
pp. 2491 ◽  
Author(s):  
Jianxin Fan ◽  
Guoliang Zhao

Sorption properties play a key role in the mobility of selenium (Se) and fraction distribution changes, leading to the bioavailability of Se in the soil environment. Thus, the effect of soil physicochemical properties on the sorption of exogenous selenite was investigated to predict the rate and capacity of sorption. Correlation analysis and multiple linear regression were used to observe the relationship between sorption characteristics and soil properties. Sequential extraction was used to observe the fractions of Se at different ages in soil. Results indicated that sorption isotherms followed the Langmuir equation, and the sorption capacity ranged from 50.7 to 567 mg·kg−1 with pseudo-second-order sorption kinetics. The correlation and multiple linear regression analyses showed that sorption parameters were significantly positively correlated with dithionite–citrate–bicarbonate-extracted Fe (FeDCB), dithionite–citrate–bicarbonate-extracted Al (AlDCB), amorphous Fe (FeOX), and soil organic matter (SOM), whereas pH was negatively correlated. Sequential extraction analyses revealed that the fraction distribution of Se in soil varied with the age, and the content of elemental Se increased with prolonged aging. FeDCB, AlDCB, FeOX, pH, and SOM play important roles in selenite sorption onto soils. Selenite sorption onto soil can be reduced to a lower-state Se, such as elemental Se and selenides, during the aging process. This information on the environmental behavior of Se is used to develop agronomic strategies for increasing Se levels in food crops and improving human health.


Author(s):  
Lizethly Cáceres-Jensen ◽  
Jorge Rodríguez-Becerra ◽  
Carlos Garrido ◽  
Mauricio Escudey ◽  
Lorena Barrientos ◽  
...  

The sorption behavior of 2,4-dichlorophenoxyacetic acid (2,4-D) in the abundant agricultural volcanic ash-derived soils (VADS) is not well understood despite being widely used throughout the world, causing effects to the environment and human health. The environmental behavior and risk assessment of groundwater pollution by pesticides can be evaluated through kinetic models. This study evaluated the sorption kinetics and 2,4-D sorption–desorption in ten VADS through batch sorption experiments. Differences in the sorption extent for the fast and slow phases was observed through the IPD model where 2,4-D sorption kinetics was controlled by external mass transfer and intra organic matter diffusion in Andisols (C1 ≠ 0). We confirmed from the spectroscopic analysis that the carboxylate group directly drives the interaction of 2,4-D on Andisol soil. The MLR model showed that IEP, FeDCB, and pH×Silt are important soil descriptors in the 2,4-D sorption in VADS. The Freundlich model accurately represented sorption equilibrium data in all cases (Kf values between 1.1 and 24.1 µg1−1/n mL1/ng−1) with comparatively higher sorption capacity on Andisols, where the highest hysteresis was observed in soils that presented the highest and lowest OC content (H close to 0).


2020 ◽  
Vol 11 (3-2020) ◽  
pp. 57-62
Author(s):  
P. E. Evstropova ◽  
◽  
M. V. Maslova ◽  

The process of sorption of lead, zinc, cadmium and cobalt ions from aqueous solutions on titanium-containing sorbents of various compositions is studied. Morris —Weber and Boyd diffusion models, Lagergren pseudo-first ordermodels, and Ho and Mackay pseudo-second order models were used to simulate sorption kinetics. It was shown that the speed of the sorption process is influenced by both the composition of the sorbent and the interaction in the sorbent —sorbate system. Thehigh chemical affinity of the studied cations to phosphate groups determines the prospects of using titanium phosphate for the concentration of heavy metals and their subsequent immobilization in phosphate matrices.


2018 ◽  
Vol 5 (3) ◽  
pp. 172257 ◽  
Author(s):  
Xing Chen ◽  
Xia Jiang ◽  
Wei Huang

Malodorous rivers are among the major environmental problems of cities in developing countries. In addition to the unpleasant smell, the sediments of such rivers can act as a sink for pollutants. The excessive amount of ammonia nitrogen (NH 3 −N) in rivers is the main factor that causes the malodour. Therefore, a suitable method is necessary for sediment disposition and NH 3 −N removal in malodorous rivers. The sediment in a malodorous river (PS) in Beijing, China was selected and modified via calcination (PS-D), Na + doping (PS-Na) and calcination–Na + doping (PS-DNa). The NH 3 −N removal efficiency using the four sediment materials was evaluated, and results indicated that the NH 3 −N removal efficiency using the modified sediment materials could reach over 60%. PS-DNa achieved the highest NH 3 −N removal efficiency (90.04%). The kinetics study showed that the pseudo-second-order model could effectively describe the sorption kinetics and that the exterior activated site had the main function of P sorption. The results of the sorption isotherms indicated that the maximum sorption capacities of PS-Na, PS-D and PS-DNa were 0.343, 0.831 and 1.113 mg g −1 , respectively, and a high temperature was favourable to sorption. The calculated thermodynamic parameters suggested that sorption was a feasible or spontaneous (Δ G  < 0), entropy-driven (Δ S  > 0), and endothermic (Δ H  > 0) reaction.


2021 ◽  
Vol 109 (2) ◽  
pp. 85-97
Author(s):  
Abeer E. Kasem ◽  
Ezzat A. Abdel-Galil ◽  
Nabil Belacy ◽  
Nagwa A. Badawy

Abstract The sorption kinetics and equilibrium isotherms of zirconium, uranium, and molybdenum ions onto synthetic polyaniline/SiO2 composite (PAn/SiO2) have been studied using batch-sorption techniques. This study was carried out to examine the sorption behavior of the PAn/SiO2 for the removal of Zr(IV), U(VI), and Mo(VI) ions from an aqueous solution. The influence of some parameters on the sorption process was also studied. The maximum sorption for Zr(IV), U(VI), and Mo(VI) ions was achieved at 60 min shaking time. Langmuir isotherm model is the most representative for discussing the sorption process with a maximum sorption capacity of 24.26, 21.82, and 13.01 mg/g for Zr(IV), U(VI), and Mo(VI) ions, respectively. Kinetic modeling revealed that the sorption of all ions follows the pseudo-second-order kinetic model. The results demonstrated that both the external and intra-particular diffusion are taken into account in determining the sorption rate. Thermodynamic parameters like ΔG°, ΔH°, and ΔS° for the sorption process were evaluated. The synthetic composite has been successfully applied for the removal and recovery of U(VI) ions from real solution (monazite leachate) using a chromatographic column packed with PAn/SiO2 composite with a breakthrough capacity equal to 239.70 mg/g.


2019 ◽  
Vol 64 (11) ◽  
pp. 1187-1195
Author(s):  
N. V. Kuzmenkova ◽  
V. V. Krupskaya ◽  
E. V. Duriagina ◽  
I. N. Semenkov ◽  
S. E. Vinokurov

The sorption characteristics of the Kara sea bottom sediments were investigated. The sediments were collected during scientific expedition of the R/V Akademik Mstislav Keldysh (Cruise AMK-66). The mineral and fraction composition of sediments was determined. It has been found that 137Cs sorbed predominantly by an ion exchange mechanism because of the clay minerals presence in the sediments. At the same time, 243Am and 90Sr sorbed from seawater by the surface complexation mechanism. The sorption kinetics for 243Am was established: about 20 hours, 137Cs: 2 hours, 90Sr: less than an hour. The sorption isotherms shows Cs and Am in experiments on marine and distilled water are described by the Henry equation. The Sr behavior in deionized water is described by the Langmuir equation, in the case of sea water, by the Freundlich equation.


2019 ◽  
Vol 79 (7) ◽  
pp. 1316-1326 ◽  
Author(s):  
Sabrine Saidi ◽  
Farouk Boudrahem ◽  
Idris Yahiaoui ◽  
Farida Aissani-Benissad

Abstract This paper presents a new sorbent, agar-agar (AA), impregnated on porous activated carbon (AC) – and its Pb(II) sorption properties. The influence of impregnation ratio (AA/AC) on the Pb(II) ion sorption properties is studied in order to optimize this parameter. The developed AC-AA shows substantial capability to sorb Pb(II) ions from aqueous solutions and 75% represents the optimal impregnation ratio. The AC-AA sorbent with impregnation ratio of 75% was characterized by a liquid displacement method, point of zero charge pH (pHPZC), scanning electron microscopy and Fourier transform infrared spectroscopy. The effect of parameters such as sorbent dosage, pH, agitation time and initial Pb(II) concentration on Pb(II) removal were examined. In addition, sorption kinetics and sorption isotherms were determined. The maximum uptake of Pb(II) was about 242 mg/g at 25 °C, pH 5 and initial Pb(II) concentration of 100 mg/L. The kinetic data were fitted to the models of pseudo-first-order and pseudo-second-order, and the experimental results follow closely the pseudo-second-order model. The results also reveal that the experimental equilibrium is very close to those predicted by the Freundlich model. The developed AC-AA exhibits high Pb(II) sorption capacity, offering possibilities for future practical use.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1157
Author(s):  
Daniele Tammaro ◽  
Lorenzo Lombardi ◽  
Giuseppe Scherillo ◽  
Ernesto Di Maio ◽  
Navanshu Ahuja ◽  
...  

Optimization of post polymerization processes of polyolefin elastomers (POE) involving solvents is of considerable industrial interest. To this aim, experimental determination and theoretical interpretation of the thermodynamics and mass transport properties of POE-solvent mixtures is relevant. Sorption behavior of n-hexane vapor in a commercial propylene-ethylene elastomer (V8880 VistamaxxTM from ExxonMobil, Machelen, Belgium) is addressed here, determining experimentally the sorption isotherms at temperatures ranging from 115 to 140 °C and pressure values of n-hexane vapor up to 1 atm. Sorption isotherms have been interpreted using a Non Random Lattice Fluid (NRLF) Equation of State model retrieving, from data fitting, the value of the binary interaction parameter for the n-hexane/V8880 system. Both the cases of temperature-independent and of temperature-dependent binary interaction parameter have been considered. Sorption kinetics was also investigated at different pressures and has been interpreted using a Fick’s model determining values of the mutual diffusivity as a function of temperature and of n-hexane/V8880 mixture composition. From these values, n-hexane intra-diffusion coefficient has been calculated interpreting its dependence on mixture concentration and temperature by a semi-empiric model based on free volume arguments.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4318
Author(s):  
Elie Meez ◽  
Abbas Rahdar ◽  
George Z. Kyzas

The threat of the accumulation of heavy metals in wastewater is increasing, due to their abilities to inflict damage to human health, especially in the past decade. The world’s environmental agencies are trying to issue several regulations that allow the management and control of random disposals of heavy metals. Scientific studies have heavily focused on finding suitable materials and techniques for the purification of wastewaters, but most solutions have been rejected due to cost-related issues. Several potential materials for this objective have been found and have been compared to determine the most suitable material for the purification process. Sawdust, among all the materials investigated, shows high potential and very promising results. Sawdust has been shown to have a good structure suitable for water purification processes. Parameters affecting the adsorption mechanism of heavy metals into sawdust have been studied and it has been shown that pH, contact time and several other parameters could play a major role in improving the adsorption process. The adsorption was found to follow the Langmuir or Freundlich isotherm and a pseudo second-order kinetic model, meaning that the type of adsorption was a chemisorption. Sawdust has major advantages to be considered and is one of the most promising materials to solve the wastewater problem.


Sign in / Sign up

Export Citation Format

Share Document