scholarly journals The Effects of Serum from Prostate Cancer Patients with Elevated Body Mass Index on Prostate Cancer Cells in Vitro

2015 ◽  
Vol 8 ◽  
pp. LPI.S23135
Author(s):  
Benjamin C. Mora ◽  
Neil E. Fleshner ◽  
Laurence H. Klotz ◽  
Vasundara Venkateswaran

We examined whether serum from obese, compared to non-obese, PCa (prostate cancer) patients creates a growth-enhancing tumor micro-environment in vitro. Serum from 80 subjects was divided into four groups: normal weight men with and without PCa and overweight/obese men with and without PCa. Cell proliferation, migration, and invasion were measured in LNCaP, and PC3 cells treated with patient serum were obtained from the above groups. The results reveal that proliferation of LNCaP cells was significantly ( P = 0.05) greater with serum from non-obese (mean = 1.26 ± 0.20) compared to that from obese patients (mean = 1.16 ± 0.19). Serum from obese PCa patients compared to non-obese PCa patients induced significantly greater amounts of cell migration ( P < 0.01) in PC3 cells. Serum from obese patients induced significantly ( P < 0.01) lower amounts of cell invasion (mean = 8.2 ± 4.5) compared to non-obese patients (mean = 18.1 ± 5.0) when treated on PC3 cells. Serum TNF-α (tumor necrosis factor alpha) levels correlated with LNCaP cell proliferation in vitro in non-obese PCa ( P < 0.01) and non-obese control groups ( P = 0.05). All statistical calculations controlled for age, since the PCa patient groups were significantly older than the control groups ( P < 0.01). In conclusion, serum from obese PCa patients induced greater PCa cell migration and lower cell proliferation and invasion in vitro.

2021 ◽  
Vol 11 (12) ◽  
pp. 2407-2414
Author(s):  
Qihong Liang ◽  
Wei Zhong

To study the effect and mechanism of miR-375 enriched in BMSC exosomes on prostate cancer (PC) cells. Bioinformatics assessed the potential regulatory miRNA of TFF3 and miR-375 level in breast cancer cells and breast cancer clinical samples was detected by PCR. Dual luciferase assay validated the relationship between TFF3 and miR-375. miR-375 mimics or sh-TFF3 was transfected into PC cells, followed by measuring miR-375 and TFF3 by PCR and Western-blot. Cell proliferation, invasion, migration and apoptosis by Edu staining, transwell and flow cytometry. The BMSC exosomes were then isolated and co-cultured with PC cells to detect cell proliferation and invasion. PC cells and tissues showed the expression of miR-375 was decreased, indicated that miR-375 specifically inhibited TFF3 level. miR-375 was enriched in MSC-derived exosomes and could be transferred to PC cells. miR-375 mimics, exosome miR-375 or silenced TFF3 inhibited TFF3 level, up-regulated PCNA, MMP-2/9 expression, thereby inhibiting cell proliferation and metastasis, and promoting cell apoptosis. miR-375 is enriched in BMSC exosomes and inhibits PC cell migration and invasion by reducing TFF3.


Dose-Response ◽  
2019 ◽  
Vol 17 (2) ◽  
pp. 155932581985098 ◽  
Author(s):  
Hongwen Cao ◽  
Yigeng Feng ◽  
Lei Chen ◽  
Chao Yu

Lobaplatin is a diastereometric mixture of platinum (II) complexes, which contain a 1,2-bis (aminomethyl) cyclobutane stable ligand and lactic acid. Previous studies have showed that lobaplatin plays inhibiting roles in various types of tumors. However, the role of lobaplatin in prostate cancer remains unknown. Cell viability was detected by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay. Cell proliferation was detected by cell colony formation assay. Cell migration and invasion were determined by transwell migration and invasion assay. Cell apoptosis was detected by flow cytometry. The messenger RNA and protein expression levels were detected by quantitative real-time polymerase chain reaction and Western blot. Lobaplatin treatment inhibits cell viability, cell proliferation, cell migration, and invasion, while promotes cell apoptosis of prostate cancer cell lines DU145 and PC3. Meanwhile, lobaplatin treatment regulates apoptosis by downregulation of BCL2 expression and upregulation of BAX expression levels. Our study suggests lobaplatin inhibits prostate cancer proliferation and migration through regulation of BCL2 and BAX expression.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Shihua Ding ◽  
Shaohui Tang ◽  
Min Wang ◽  
Donghai Wu ◽  
Haijian Guo

Background and Aims. Acyl-CoA synthetase 5 (ACS5) has been reported to be associated with the development of various cancers, but the role of it in colorectal cancer (CRC) is not well understood. The present study aimed to explore the potential role of ACS5 in the development and progression of CRC. Methods. ACS5 expression in CRC tissues and CRC cell lines was examined, and its clinical significance was analyzed. The role of ACS5 in cell proliferation, apoptosis, and invasion was examined in vitro. Results. We found that ACS5 expression was upregulated in CRC cells and CRC tissues and that high ACS5 expression was more frequent in CRC patients with excess muscular layer and with poor tumor differentiation. Furthermore, knockdown of ACS5 in HT29 and SW480 cells significantly dampened cell proliferation, induced cell apoptosis, and reduced cell migration and invasion. In contrast, the ectopic overexpression of ACS5 in LOVO and SW620 cells remarkably promoted cell proliferation, inhibited cell apoptosis, and enhanced cell migration and invasion. Enhanced cell growth and invasion ability mediated by the gain of ACS5 expression were associated with downregulation of caspase-3 and E-cadherin and upregulation of survivin and CD44. Conclusions. Our data demonstrate that ACS5 can promote the growth and invasion of CRC cells and provide a potential target for CRC gene therapy.


Endocrinology ◽  
2013 ◽  
Vol 154 (5) ◽  
pp. 1768-1779 ◽  
Author(s):  
BaoHan T. Vo ◽  
Derrick Morton ◽  
Shravan Komaragiri ◽  
Ana C. Millena ◽  
Chelesie Leath ◽  
...  

Abstract TGF-β plays an important role in the progression of prostate cancer. It exhibits both tumor suppressor and tumor-promoting activities. Correlations between cyclooxygenase (COX)-2 overexpression and enhanced production of prostaglandin (PG)E2 have been implicated in cancer progression; however, there are no studies indicating that TGF-β effects in prostate cancer cells involve PGE2 synthesis. In this study, we investigated TGF-β regulation of COX-1 and COX-2 expression in prostate cancer cells and whether the effects of TGF-β on cell proliferation and migration are mediated by PGE2. COX-1 protein was ubiquitously expressed in prostate cells; however, COX-2 protein levels were detected only in prostate cancer cells. TGF-β treatment increased COX-2 protein levels and PGE2 secretion in PC3 cells. Exogenous PGE2 and PGF2α had no effects on cell proliferation in LNCaP, DU145, and PC3 cells whereas PGE2 and TGF-β induced migration and invasive behavior in PC3 cells. Only EP2 and EP4 receptors were detected at mRNA levels in prostate cells. The EP4-targeting small interfering RNA inhibited PGE2 and TGF-β-induced migration of PC3 cells. TGF-β and PGE2 induce activation of PI3K/AKT/mammalian target of rapamycin pathway as indicated by increased AKT, p70S6K, and S6 phosphorylation. Rapamycin completely blocked the effects of TGF-β and PGE2 on phosphorylation of p70S6K and S6 but not on AKT phosphorylation. PGE2 and TGF-β induced phosphorylation of AKT, which was blocked by antagonists of PGE2 (EP4) receptors (L161982, AH23848) and PI3K inhibitor (LY294002) in PC3 cells. Pretreatment with L161982 or AH23848 blocked the stimulatory effects of PGE2 and TGF-β on cell migration, whereas LY294002 or rapamycin completely eliminated PGE2, TGF-β, and epidermal growth factor-induced migration in PC3 cells. We conclude that TGF-β increases COX-2 levels and PGE2 secretion in prostate cancer cells which, in turn, mediate TGF-β effects on cell migration and invasion through the activation of PI3K/AKT/mammalian target of rapamycin pathway.


2019 ◽  
Vol 19 (10) ◽  
pp. 807-816 ◽  
Author(s):  
Laura Pietrovito ◽  
Giuseppina Comito ◽  
Matteo Parri ◽  
Elisa Giannoni ◽  
Paola Chiarugi ◽  
...  

Background:The bisphosphonate Zoledronic acid (ZA) is a potent osteoclast inhibitor currently used in the clinic to reduce osteoporosis and cancer-induced osteolysis. Moreover, ZA exerts an anti-tumor effect in several tumors. Despite this evidence, the relevance of ZA in prostate cancer (PCa) is not completely understood.Objective:To investigate the effect of ZA administration on the invasive properties of PC3 cells, which are characterised by RhoA-dependent amoeboid motility.Methods:The effect of ZA administration on the in vitro invasive properties of PC3 cells was evaluated by cell migration in 3D collagen matrices, immunofluorescence and Boyden assays or transendothelial migration. Lung retention and colonization assays were performed to assess the efficacy of ZA administration in vivo.Results:PC3 cells are characterised by RhoA-dependent amoeboid motility. We now report a clear inhibition of in vitro PC3 cell invasion and RhoA activity upon ZA treatment. Moreover, to confirm a specific role of ZA in the inhibition of amoeboid motility of PC3 cells, we demonstrate that ZA interferes only partially with PC3 cells showing a mesenchymal phenotype due to both treatment with conditioned medium of cancer associated fibroblasts or to the acquisition of chemoresistance. Furthermore, we demonstrate that ZA impairs adhesion to endothelial cells and the trans-endothelial cell migration, two essential properties characterising amoeboid motility and PC3 metastatic dissemination. In vivo experiments prove the ability of ZA to inhibit the metastatic process of PC3 cells as shown by the decrease in lung colonization.Conclusion:This study demonstrates that ZA inhibits Rho-dependent amoeboid motility of PC3 cells, thus suggesting ZA as a potential therapy to impede the metastatic dissemination of PC3 cells.


2019 ◽  
Vol 39 (5) ◽  
Author(s):  
Yongshun Li ◽  
Changrong Huang ◽  
Qizhou Bai ◽  
Jun Yu

AbstractEsophageal cancer is a common digestive tract cancer, which is a serious threat to human health. Ribophorin II (RPN2) is a part of an N-oligosaccharyltransferase complex, which is excessively expressed in many kinds of cancers. In the present study, we explore the biological role of RNP2 in esophageal cancer. First, we found that the expression of RPN2 was higher in esophageal cancer tissues than in adjacent non-tumor tissues, and negatively correlated with E-cadherin expression. RPN2 expression levels in esophageal cancer tissues were positively associated with differentiation and tumor node metastasis (TNM) stage. Furthermore, the expression of RPN2 was increased significantly in esophageal cancer cell lines compared with normal cells. The effect of RPN2 down-regulation on cell proliferation, cell migration, and cell invasion was examined by cell counting kit-8 (CCK8), wound healing assay, and Transwell assay, respectively. Silencing RPN2 effectively inhibited cell proliferation of esophageal cancer cells in vitro and in vivo. Cell migration and invasion were also weakened dramatically by siRPN2 treatment of esophageal cancer cells. In addition, protein expression of proliferating cell nuclear antigen (PCNA), matrix metalloproteinase (MMP-2), and E-cadherin in esophageal cancer cells was determined by Western blot analysis. PCNA, MMP-2, E-cadherin, Snail and phosphorylation-Smad2/3 expression was also regulated notably by siRPN2 treatment. These findings indicate that RPN2 exhibits oncogenetic capabilities in esophageal cancer, which could provide novel insights into esophageal cancer prevention and treatment.


2017 ◽  
Vol 37 (5) ◽  
Author(s):  
Ankit Tiwari ◽  
Niharika Pattnaik ◽  
Archita  Mohanty Jaiswal ◽  
Manjusha Dixit

Facioscapulohumeral muscular dystrophy (FSHD) region gene 1 (FRG1) is a candidate gene for FSHD. FRG1 regulates various muscle-related functions, but studies have proposed its role in development and angiogenesis also, where it is involved with tumor-associated molecules. Therefore, we decided to look into its role in tumor progression, tumor angiogenesis, and its impact on cellular properties. Cell proliferation, migration, invasion and in vitro angiogenesis assays were performed to decipher the effect of FRG1 on endothelial and epithelial cell functions. Q-RT PCR was done for human embyonic kidney (HEK293T) cells with altered FRG1 levels to identify associated molecules. Further, immunohistochemistry was done to identify FRG1 expression levels in various cancers and its association with tumor angiogenesis. Subsequently, inference was drawn from Oncomine and Kaplan–Meier plotter analysis, for FRG1 expression in different cancers. Ectopic expression of FRG1 affected cell migration and invasion in both HEK293T and human umbilical vein endothelial cells (HUVECs). In HUVECs, FRG1 overexpression led to reduced angiogenesis in vitro. No effect was observed in cell proliferation in both the cell types. Q-RT PCR data revealed reduction in granulocyte-colony stimulating factor (G-CSF) expression with FRG1 overexpression and increased expression of matrix metalloproteinase 10 (MMP10) with FRG1 knockdown. Immunohistochemistry analysis showed reduced FRG1 levels in tumors which were supported by in silico analysis data. These findings suggest that reduction in FRG1 expression in gastric, colon and oral cavity tumor might have a role in tumor progression, by regulating cell migration and invasiveness. To elucidate a better understanding of molecular signaling involving FRG1 in angiogenesis regulation, further study is required.


Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 5875
Author(s):  
Patrice Cagle ◽  
Nikia Smith ◽  
Timothy O. Adekoya ◽  
Yahui Li ◽  
Susy Kim ◽  
...  

Abnormal expression of microRNA miR-214-3p (miR-214) is associated with multiple cancers. In this study, we assessed the effects of CRISPR/Cas9 mediated miR-214 depletion in prostate cancer (PCa) cells and the underlying mechanisms. Knockdown of miR-214 promoted PCa cell proliferation, invasion, migration, epithelial-mesenchymal transition (EMT), and increased resistance to anoikis, a key feature of PCa cells that undergo metastasis. The reintroduction of miR-214 in miR-214 knockdown cells reversed these effects and significantly suppressed cell proliferation, migration, and invasion. These in vitro studies are consistent with the role of miR-214 as a tumor suppressor. Moreover, miR-214 knockout increased tumor growth in PCa xenografts in nude mice supporting its anti-oncogenic role in PCa. Knockdown of miR-214 increased the expression of its target protein, Protein Tyrosine Kinase 6 (PTK6), a kinase shown to promote oncogenic signaling and tumorigenesis in PCa. In addition, miR-214 modulated EMT as exhibited by differential regulation of E-Cadherin, N-Cadherin, and Vimentin both in vitro and in vivo. RNA-seq analysis of miR-214 knockdown cells revealed altered gene expression related to PCa tumor growth pathways, including EMT and metastasis. Collectively, our findings reveal that miR-214 is a key regulator of PCa oncogenesis and is a potential novel therapeutic target for the treatment of the disease.


Sign in / Sign up

Export Citation Format

Share Document