TRANSFORMATIONS OF NITROGEN ADDED AS AMMONIUM AND MANURE TO SOIL WITH A HIGH AMMONIUM-FIXING CAPACITY UNDER LABORATORY CONDITIONS

1976 ◽  
Vol 56 (4) ◽  
pp. 319-331 ◽  
Author(s):  
F. J. SOWDEN

Ammonium sulfate, dairy cattle liquid manure and the “liquid" and “solid" fractions from the manure were separately added to 300-g samples of a loam soil at the rate of 250 μg N/g of soil and incubated in the laboratory at 22 C and 60% water-holding capacity. The Brunisolic soil sample used contained 20% clay which was largely vermiculite. Subsamples were removed at intervals for analysis of nitrate, exchangeable and fixed ammonium, Warburg studies of respiration rate and the distribution of organic N. One series of duplicate samples was leached with water three times during the course of the experiment which was over a year. About half of the nitrogen of the manure was in the NH4+ form and the exchangeable N from this as well as that from (NH4)2SO4 was rapidly nitrified (in about 3 wk) in both the leached and unleached series. About 40% of the NH4+-N of the manure and fertilizer was fixed by the clay and this was nitrified more slowly. With the fertilizer-NH4+, the fixed-N was reduced after about a year to a value slightly above that of the control soil at the beginning of the experiment. With the manure and its liquid fraction a smaller proportion of the "added" fixed NH4+ was nitrified. There was no increase in fixed-NH4+, nitrate or exchangeable NH4+ throughout the experiment with the solid fraction, although with the control soil more than 100 μg/g of nitrate was formed. There was a slight increase in amino compounds, amino acids and amino sugars, from 31 to 245 days. The amounts of these compounds were highest with the solid -fraction-treated soil and lowest with the control. The oxygen uptake was highest with solid -amended soil at all times; after about 180 days the soils treated with the other materials had the same oxygen uptake as the control soil. Leaching of the soil removed the nitrate formed but did not appear to have any other effect. Three leachings, the last after 245 days, removed 113 μg mineral-N/g soil from the control and only 144 μg/g from the manure-treated soil although 142 μg NH4+-N/g soil had been added to the latter. Clay fixation and immobilization had apparently "tied up" most of the added mineral-N.

Author(s):  
Betina Nørgaard Pedersen ◽  
Bent T. Christensen ◽  
Luca Bechini ◽  
Daniele Cavalli ◽  
Jørgen Eriksen ◽  
...  

Abstract The plant availability of manure nitrogen (N) is influenced by manure composition in the year of application whereas some studies indicate that the legacy effect in following years is independent of the composition. The plant availability of N in pig and cattle slurries with variable contents of particulate matter was determined in a 3-year field study. We separated cattle and a pig slurry into liquid and solid fractions by centrifugation. Slurry mixtures with varying proportions of solid and liquid fraction were applied to a loamy sand soil at similar NH4+-N rates in the first year. Yields and N offtake of spring barley and undersown perennial ryegrass were compared to plots receiving mineral N fertilizer. The first year N fertilizer replacement value (NFRV) of total N in slurry mixtures decreased with increasing proportion of solid fraction. The second and third season NFRV averaged 6.5% and 3.8% of total N, respectively, for cattle slurries, and 18% and 7.5% for pig slurries and was not related to the proportion of solid fraction. The estimated net N mineralization of residual organic N increased nearly linearly with growing degree days (GDD) with a rate of 0.0058%/GDD for cattle and 0.0116%/GDD for pig slurries at 2000–5000 GDD after application. In conclusion NFRV of slurry decreased with increasing proportion of solid fraction in the first year. In the second year, NFRV of pig slurry N was significantly higher than that of cattle slurry N and unaffected by proportion between solid and liquid fraction.


Soil Research ◽  
2008 ◽  
Vol 46 (8) ◽  
pp. 703 ◽  
Author(s):  
Guixin Pu ◽  
Mike Bell ◽  
Glenn Barry ◽  
Peter Want

The fate of nitrogen (N) applied in biosolids was investigated in a forage production system on an alluvial clay loam soil in south-eastern Queensland, Australia. Biosolids were applied in October 2002 at rates of 6, 12, 36, and 54 dry t/ha for aerobically digested biosolids (AE) and 8, 16, 48, and 72 dry t/ha for anaerobically digested biosolids (AN). Rates were based on multiples of the Nitrogen Limited Biosolids Application rate (0.5, 1, 3, and 4.5NLBAR) for each type of biosolid. The experiment included an unfertilised control and a fertilised control that received multiple applications of synthetic fertiliser. Forage sorghum was planted 1 week after biosolids application and harvested 4 times between December 2002 and May 2003. Dry matter production was significantly greater from the biosolids-treated plots (21–27 t/ha) than from the unfertilised (16 t/ha) and fertilised (18 t/ha) controls. The harvested plant material removed an extra 148–488 kg N from the biosolids-treated plots. Partial N budgets were calculated for the 1NLBAR and 4.5NLBAR treatments for each biosolids type at the end of the crop season. Crop removal only accounted for 25–33% of the applied N in the 1NLBAR treatments and as low as 8–15% with 4.5NLBAR. Residual biosolids N was predominantly in the form of organic N (38–51% of applied biosolids N), although there was also a significant proportion (10–23%) as NO3-N, predominantly in the top 0.90 m of the soil profile. From 12 to 29% of applied N was unaccounted for, and presumed to be lost as gaseous nitrogen and/or ammonia, as a consequence of volatilisation or denitrification, respectively. In-season mineralisation of organic N in biosolids was 43–59% of the applied organic N, which was much greater than the 15% (AN)–25% (AE) expected, based on current NLBAR calculation methods. Excessive biosolids application produced little additional biomass but led to high soil mineral N concentrations that were vulnerable to multiple loss pathways. Queensland Guidelines need to account for higher rates of mineralisation and losses via denitrification and volatilisation and should therefore encourage lower application rates to achieve optimal plant growth and minimise the potential for detrimental impacts on the environment.


1998 ◽  
Vol 78 (4) ◽  
pp. 597-605 ◽  
Author(s):  
Thi Sen Tran ◽  
Marcel Giroux

From an environmental standpoint, it is important to follow the fate of applied fertilizer N in soil–plant system. In this study, field experiments were conducted at two sites (Du Contour and Sainte-Rosalie series) in the Saint-Hyacinthe region in 1989 and 1990, and at four sites (Le Bras-I, -II, -III and Fourchette series) at Saint-Lambert-de-Lauzon in 1989, 1990 and 1991. The site and year combinations represented a range of different climatic conditions. The 15N-labelled fertilizer as 15NH415NO3 was spread on microplot at 180 kg N ha−1 rate, just before corn seeding. The recovery of fertilizer N (NREC) of grain and silage corn (Zea may L.) varied from 47 to 51%. At harvest, the amount of residual mineral N (soil and fertilizer) in soil profile (0–90 cm) ranged from 55 kg N ha−1 in a wet growing season to 176 kg N ha−1 in a dry growing season. The NREC in the mineral pool varied from 1.4% in wet growing season, especially on sandy soil, to 20.6% under dry conditions. The NREC recovered in the organic and fixed pools was 16.3, 24.6 and 38.9% of applied rate on the sandy soil, silt loam soil and clay loam soil, respectively. This pool was immobilized in soil profile and less subjected to significant loss overwinter than the mineral pool. The annual loss of fertilizer N varied from 13.6% on Sainte-Rosalie soil, having high N immobilization capacity, to 44.1% on Le Bras-II. These results shown that under the humid conditions found in Quebec, application of fertilizer N exceeding the optimum N rate will contribute to environmental pollution risk especially on permeable soils or soils having low N fixation and immobilization capacity. Key words: Fertilizer N loss, 15N-fertilizer, corn, mineral N, organic N


Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 560
Author(s):  
Allah Bakhsh ◽  
Se-Jin Lee ◽  
Eun-Yeong Lee ◽  
Nahar Sabikun ◽  
Young-Hwa Hwang ◽  
...  

This study assessed the effects of Methylcellulose (MC) at different concentrations on plant-based meat analog (PBMA) patties, comprised of commercial texture vegetable protein (C-TVP) and textured isolate soy protein (T-ISP) as key ingredients, and compared to beef patty control. A significantly higher difference was observed in moisture content in control with increasing MC concentration than the C-TVP and T-ISP patties. However, protein varied significantly among three different protein sources, with control had higher protein content than PBMA patties. Crude fiber content recorded higher values in C-TVP as compared to control. Significantly lower pH values were recorded in control than C-TVP and T-ISP respectively. Regardless, with the addition of MC or ingredient PBMA and control patties tend to reduce lightness (L*) and redness (a*) value after cooking. Although control sample before cooking exhibits lighter and redder than PBMA patties (C-TVP and T-ISP). Likewise, water holding capacity (WHC) decreases as the concentration of MC increases (1.5–4%) in control and PBMA patties. Warner-Bratzler shear force (WBSF) and texture profile analysis (TPA), including hardness, chewiness, and gumminess of control, were significantly higher than C-TVP and T-ISP. Consequently, panelists’ in the sensory analysis presented that C-TVP patties containing 3% of MC had better sensory properties than T-ISP. Hence, PBMA patties with C-TVP and incorporation of 3% MC are considered ideal for manufacturing of meat analog as related to control (beef).


Author(s):  
Subin Kalu ◽  
Gboyega Nathaniel Oyekoya ◽  
Per Ambus ◽  
Priit Tammeorg ◽  
Asko Simojoki ◽  
...  

AbstractA 15N tracing pot experiment was conducted using two types of wood-based biochars: a regular biochar and a Kon-Tiki-produced nutrient-enriched biochar, at two application rates (1% and 5% (w/w)), in addition to a fertilizer only and a control treatment. Ryegrass was sown in pots, all of which except controls received 15N-labelled fertilizer as either 15NH4NO3 or NH415NO3. We quantified the effect of biochar application on soil N2O emissions, as well as the fate of fertilizer-derived ammonium (NH4+) and nitrate (NO3−) in terms of their leaching from the soil, uptake into plant biomass, and recovery in the soil. We found that application of biochars reduced soil mineral N leaching and N2O emissions. Similarly, the higher biochar application rate of 5% significantly increased aboveground ryegrass biomass yield. However, no differences in N2O emissions and ryegrass biomass yields were observed between regular and nutrient-enriched biochar treatments, although mineral N leaching tended to be lower in the nutrient-enriched biochar treatment than in the regular biochar treatment. The 15N analysis revealed that biochar application increased the plant uptake of added nitrate, but reduced the plant uptake of added ammonium compared to the fertilizer only treatment. Thus, the uptake of total N derived from added NH4NO3 fertilizer was not affected by the biochar addition, and cannot explain the increase in plant biomass in biochar treatments. Instead, the increased plant biomass at the higher biochar application rate was attributed to the enhanced uptake of N derived from soil. This suggests that the interactions between biochar and native soil organic N may be important determinants of the availability of soil N to plant growth.


1978 ◽  
Vol 14 (3) ◽  
pp. 253-259 ◽  
Author(s):  
H. N. Verma ◽  
S. S. Prihar ◽  
Ranjodh Singh ◽  
Nathu Singh

SUMMARYField experiments were conducted for 4 years to study the yield of ‘kharif’ and ‘rabi’ crops grown in sequence on two soils differing in water-holding capacity. The results indicated that drought caused greater reduction in yield of rainy-season crops on loamy sand than on sandy loam soil. In low retentivity soil it was more profitable to raise a single crop of wheat on soil-stored water. In sandy loam soil of higher retentivity, two crops a year gave much higher yields than a single crop. Of the sequences tried, maize followed by wheat gave the highest and most stable yields. For ‘rabi’ crops, stored water showed a better yield response than an equivalent amount of rain during the growing season.


2013 ◽  
Vol 44 (2s) ◽  
Author(s):  
Niccolò Pampuro ◽  
Alessio Facello ◽  
Eugenio Cavallo

The excessive amount of pig slurry spread on soil has contributed to nitrate water pollution both in surface and in ground waters, especially in areas classified as vulnerable zones to nitrate in accordance with European Regulation (91/676/CEE). Several techniques have been developed to manage livestock slurries as cheaply and conveniently as possible and to reduce potential risks of environmental pollution. Among these techniques, solid-liquid separation of slurry is a common practice in Italy. The liquid fraction can be used for irrigation and the solid fraction, after aerobic stabilization, produces an organic compost rich in humic substances. However, compost derived from swine solid fraction is a low density material (bulk density less than 500 kg􀀀m–3). This makes it costly to transport composted swine solid fraction from production sites to areas where it could be effectively utilized for value-added applications such as in soil fertilization. Densification is one possible way to enhance the storage and transportation of the compost. This study therefore investigates the effect of pressure (20- 110 MPa) and pressure application time (5-120 s) on the compaction characteristics of compost derived from swine solid fraction. Two different types of material have been used: composted swine solid fraction derived from mechanical separation and compost obtained by mixing the first material with wood chips. Results obtained showed that both the pressure applied and the pressure application time significantly affect the density of the compacted samples; while the specific compression energy is significantly affected only by the pressure. Best predictor equations were developed to predict compact density and the specific compression energy required by the densification process. The specific compression energy values based on the results from this study (6-32 kJ􀀀kg–1) were significantly lower than the specific energy required to manufacture pellets from biomass feedstock (typically 19-90 kJ􀀀kg–1).


1994 ◽  
Vol 74 (1) ◽  
pp. 99-107 ◽  
Author(s):  
D. C. Jans-Hammermeister ◽  
W. B. McGill ◽  
T. L. Jensen

The distribution and dynamics of 15N following green manuring of 15N-labelled 10% bloom and full bloom field pea (Pisum sativum ’Sirius’) were investigated in the soil mineral N, microbial N and non-microbial organic N (NMO-N) fractions and in a subsequent barley crop at two contrasting field sites in central Alberta: one on a Chernozemic (Dark Brown) soil near Provost and the other on a Luvisolic (Gray Luvisol) soil near Rimbey. Soils and plants were sampled four times during a 1-yr period. The 10% bloom and full bloom pea shoots were similar in dry matter production and N and C content. More N was, however, released from the younger pea residues directly following soil incorporation, which we attributed to a larger proportion of labile components. Barley yield, N content and 15N recovery in the grain were not influenced by legume bloom stage at incorporation, although significantly more 15N was recovered in the barley straw and roots of the full bloom treatment. Incorporation of full bloom legumes resulted in closer synchrony between the appearance of legume-derived mineral 15N and early N demand by the barley crop. The decay rate constants for the recalcitrant fraction of the legume residues were not significantly influenced by bloom stage or site over the time intervals of our observations and are, thus, consistent with the theory that decomposition of the recalcitrant fraction of plant residues can be described by a single exponential equation. Key words:15N, legume green manuring, Pisum sativum, decomposition


Author(s):  
Kalpana Pudasaini ◽  
Nanjappa Ashwath ◽  
Kerry Walsh ◽  
Thakur Bhattarai

A factorial pot experiment was conducted using two types of soils (sandy loam and red clay loam) that are commonly used for commercial vegetable production in Bundaberg, region of Central Queensl and Australia. The soils were amended with 0, 25, 50 and 75 t/ha of green waste biochar and minimum doses of N, P and K (30 kg/ha, 30 kg/ha and 40 kg/ha respectively). After two weeks of plant establishment, the pots were leached with 1.5 litres of deionised water at week intervals, and cation concentrations of the leachate were determined. In 25 t/ha biochar treatment, there was a significant (P<0.05) reduction in K and Ca leaching by 40% and 26% respectively from sandy loam, and of Ca by 23% from the red clay loam. Soil water holding capacity and soil organic carbon were also increased in both biochar treated soils. After 12 weeks of growth, shoot weight was signifi cantly (P<0.05) higher in 25 t/ha biochar-treated sandy loam and red clay loam (32% and 31% respectively). These results clearly demonstrated that a higher yield of capsicum can be achieved from green waste biochar application in sandy loam and red clay loam at 25 t/ha biochar.DOI: http://dx.doi.org/10.3126/hn.v11i1.7221 Hydro Nepal Special Issue: Conference Proceedings 2012 pp.86-90


Author(s):  
Syed Azam Shah ◽  
Wisal Mohammad ◽  
Haroon Haroon ◽  
Adnan Anwar Khan

The study was designed to asses the residual effect of organic N (Poultry Manure) and mineral N on maize crop in field experiments carried out on silty clay loam soil at NIFA, Tarnab, Peshawar, Khyber Pakhtunkhwa (KP) Pakistan during 2014-15. Combined dose of N from both sources were 120 kg ha-1 applied to wheat crop alone and in different combination making six treatments. Maize variety (Azam) was sown in Randomized complete block (RCB) design with four replications. Agronomic data, grains ear-1, 1000 grain weight, biomass grain yield data, N-uptake in maize grain and straw were recorded. Results showed that maximum grain ear−1, 1000 grain weight, biomass and grain yield was obtained from treatment where 25% N applied from poultry manure + 75% from mineral N source applied to previous wheat crop. Agronomic efficiency and nitrogen use efficiency were also found maximum in treatment where 75% poultry manure + 25% mineral N was applied. It was concluded from the study that residual effect of organic manure with mineral N in different ratios enhances crop productivity and soil fertility.


Sign in / Sign up

Export Citation Format

Share Document