Influence of Various Flow Rates of CNG in CI Engine with Blend of Tamanu Methyl Ether and Ethanol

Author(s):  
M. Parthasarathy ◽  
S. Ramkumar ◽  
J. Isaac Joshua Ramesh Lalvani

The petroleum fuels are continuously depleted, and they are a non-renewable source of the energy. Continuous usage of them leads to depletion of resource and an increase in global warming. Due to higher norms imposed on the fuel quality, the refining cost gets higher, and hence, obviously, the cost of the petroleum products would be higher. This leads to the search for alternate energy sources. The wide usage of CNG in the petrol engine is a common practice in the automobile sector, but the combined usage of CNG in dual fuel condition with the blend of ethanol and TME has not been practiced yet. The fuels used for this research are diesel, neat Tamanu biodiesel, blend of 10% ethanol with 90% Tamanu Methyl Ether (TMEE10) and CNG. Due to the higher compression ratio of CI engine, the usage of CNG in it will produce higher brake thermal efficiency. Due to the higher-octane rating of CNG, it wouldn’t be used as fuel in CI engine. If CNG is used as a fuel in CI engine, it leads to higher knock and vibrations. Hence, it is difficult to operate the engine, but an energy share of CNG can be used in a CI engine. In this research, CNG is inducted into the engine. The flow rate is varied, such as 0.015 kg/hr., 0.026 kg/hr., 0.035 kg/hr. and 0.046 kg/hr., while the blend of biodiesel and ethanol is injected directly into the combustion chamber. Since the calorific value of TME and ethanol is less when compared to diesel, CNG is inducted to enrich the overall energy mix of the fuel. Based on the experimental investigation, it is found that the combination of TMEE10 and CNG flow rate of 0.035 kg/hr. produces higher performance and better emission characteristics.

2019 ◽  
Vol 8 (4) ◽  
pp. 8251-8254

Speedy industry development and population growth have an outcome in the vigorous demand for energy. The disorganize consumption of fossil fuels has to lead to the destruction of petroleum fuels. The exhaust emission from diesel engines has caused the most important impact in troubling the environment. To rise above these harms, the focus is necessary for substitute supply. Many researchers are finding alternative fuel for fossil fuels. The substitute for petroleum products should be environmentally friendly, easily available and technically feasible. Biodiesel is derived from vegetable oils through the transesterification process. The properties of corn oil methyl ester blends were obtained are similar to diesel. However, the viscosity of biodiesel was high compared to diesel and it affects ignition delay it causes incomplete combustion. To preheat the fuel is necessary with the help of exhaust gas and it enhances the combustion process. In this experimental analysis diesel fuel, 20% Biodiesel + 80% Diesel and 40% Biodiesel + 60% Diesel at three different temperatures of fuels are 35°C, 45°C and 55°C is tested.


2020 ◽  
Vol 13 (2) ◽  
pp. 105-109
Author(s):  
E. S. Dremicheva

This paper presents a method of sorption using peat for elimination of emergency spills of crude oil and petroleum products and the possibility of energy use of oil-saturated peat. The results of assessment of the sorbent capacity of peat are presented, with waste motor oil and diesel fuel chosen as petroleum products. Natural peat has been found to possess sorption properties in relation to petroleum products. The sorbent capacity of peat can be observed from the first minutes of contact with motor oil and diesel fuel, and significantly depends on their viscosity. For the evaluation of thermal properties of peat saturated with petroleum products, experimental studies have been conducted on determination of moisture and ash content of as-fired fuel. It is shown that adsorbed oil increases the moisture and ash content of peat in comparison with the initial sample. Therefore, when intended for energy use, peat saturated with petroleum products is to be subjected to additional drying. Simulation of net calorific value has been performed based on the calorific values of peat and petroleum products with different ratios of petroleum product content in peat and for a saturated peat sample. The obtained results are compared with those of experiments conducted in a calorimetric bomb and recalculated for net calorific value. A satisfactory discrepancy is obtained, which amounts to about 12%. Options have been considered providing for combustion of saturated peat as fuel (burnt per se and combined with a solid fuel) and processing it to produce liquid, gaseous and solid fuels. Peat can be used to solve environmental problems of elimination of emergency spills of crude oil and petroleum products and as an additional resource in solving the problem of finding affordable energy.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Delia Teresa Sponza ◽  
Cansu Doğanx

The scope of this study, is  1-butanol production from CO2 with S. elongatus PCC 7942 culture. The yields of 1-butanolproduced/CO2utilized have been calculated. The maximum concentration of produced 1- butanol is 35.37 mg/L and 1-butanolproduced/CO2utilized efficiency is 92.4. The optimum operational conditions were  30°C temperature, 60 W intensity of light, pH= 7.1, 120 mV redox potential, 0.083 m3/sn flow rate with CO2 and 0.5 mg/l dissolved O2 concentration. Among the enzymes on the metabolic trail of the production of 1-butanol via using S. elongatus PCC 7942 cyanobacteria. At maximum yield; the measured concentrations are 0.016 µg/ml for hbd; 0.0022 µg/ml for Ter and 0.0048 µg/ml for AdhE2. The cost analyses necessary for 1-butanol production has been done and the cost of 1 litre 1-butanol has been determined as maximum 1.31 TL/L.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4566
Author(s):  
Minsoo Choi ◽  
Wongwan Jung ◽  
Sanghyuk Lee ◽  
Taehwan Joung ◽  
Daejun Chang

This study analyzes the thermodynamic, economic, and regulatory aspects of boil-off hydrogen (BOH) in liquid hydrogen (LH2) carriers that can be re-liquefied using a proposed re-liquefaction system or used as fuel in a fuel cell stack. Five LH2 carriers sailing between two designated ports are considered in a case study. The specific energy consumption of the proposed re-liquefaction system varies from 8.22 to 10.80 kWh/kg as the re-liquefaction-to-generation fraction (R/G fraction) is varied. The economic evaluation results show that the cost of re-liquefaction decreases as the re-liquefied flow rate increases and converges to 1.5 $/kg at an adequately large flow rate. Three energy efficient design index (EEDI) candidates are proposed to determine feasible R/G fractions: an EEDI equivalent to that of LNG carriers, an EEDI that considers the energy density of LH2, and no EEDI restrictions. The first EEDI candidate is so strict that the majority of the BOH should be used as fuel. In the case of the second EEDI candidate, the permittable R/G fraction is between 25% and 33%. If the EEDI is not applied for LH2 carriers, as in the third candidate, the specific life-cycle cost decreases to 67% compared with the first EEDI regulation.


2006 ◽  
Vol 290 (2) ◽  
pp. H894-H903 ◽  
Author(s):  
Ghassan S. Kassab

The branching pattern and vascular geometry of biological tree structure are complex. Here we show that the design of all vascular trees for which there exist morphometric data in the literature (e.g., coronary, pulmonary; vessels of various skeletal muscles, mesentery, omentum, and conjunctiva) obeys a set of scaling laws that are based on the hypothesis that the cost of construction of the tree structure and operation of fluid conduction is minimized. The laws consist of scaling relationships between 1) length and vascular volume of the tree, 2) lumen diameter and blood flow rate in each branch, and 3) diameter and length of vessel branches. The exponent of the diameter-flow rate relation is not necessarily equal to 3.0 as required by Murray's law but depends on the ratio of metabolic to viscous power dissipation of the tree of interest. The major significance of the present analysis is to show that the design of various vascular trees of different organs and species can be deduced on the basis of the minimum energy hypothesis and conservation of energy under steady-state conditions. The present study reveals the similarity of nature's scaling laws that dictate the design of various vascular trees and the underlying physical and physiological principles.


2010 ◽  
Vol 61 (3) ◽  
pp. 599-606 ◽  
Author(s):  
Johnsely S. Cyrus ◽  
G. B. Reddy

Constructed wetland systems have gained attention as attractive solutions for wastewater treatment. Wetlands are not efficient to treat wastewater with high concentrations of phosphorus (P). In order to remove high soluble P loads by wetland, sorbent beds can be added prior to the discharge of wastewater into wetlands. Sorption by sorbent materials is identified as a method for trapping excess P in wastewaters. In the present investigation, shale has been identified as a sorbent material for removal of phosphate (PO4-P) due to the cost effectiveness, stability and possibility of regeneration. The study focuses on the removal of PO4-P from wastewater using shale and the feasibility of using the P-sorbed material as slow-release fertilizer. Phosphorus sorption experiments were conducted by using shale (2 mm and 2–4.7 mm). Results indicate that Shale I (particle size = 2 mm) showed the highest sorption of PO4-P (500 ± 44 mg kg−1). Breakthrough point was reached within 10 h in columns with flow rates of 2 and 3 ml min−1. Lower flow rate of 1 ml min−1 showed an average residence time of about 2 h while columns with a higher flow rate of 3 ml min−1 showed a residence time of about 40 minutes. Variation in flow rate did not influence the desorption process. Since very low concentrations of PO4-P are released, Shale saturated with PO4-P may be used as a slow nutrient release source of P or as a soil amendment. The sorbent can also be regenerated by removing the sorbed PO4-P by using 0.1 N HCl.


Author(s):  
Мурсалим Мухутдинович Гареев ◽  
Марат Иозифович Валиев ◽  
Филипп А. Карпов

Путевая деградация противотурбулентных присадок (ПТП) может стать причиной изменения основных параметров режима магистрального трубопровода - давления и расхода - относительно установившихся значений и осложнить контроль их отклонений от нормативных показателей. При этом до настоящего момента отсутствовала методика расчета режимов перекачки при использовании ПТП с учетом деградации. Авторами была поставлена цель по разработке методики для математического описания распределения давления в трубопроводе с учетом путевой деградации присадки, а также при различных концентрациях ПТП. Для достижения указанной цели предлагается дополнить уравнение баланса напоров с учетом эмпирической зависимости эффективности присадки от длины трубопровода. При расчетах давления в промежуточных точках трассы предлагается использовать данные опытно-промышленных испытаний по изменению эффективности ПТП. Для иллюстрации применения методики рассматриваются примеры перекачки нефти и нефтепродуктов с добавлением присадок в различных концентрациях. На основании экспериментальных данных получена адекватная математическая модель снижения эффективности ПТП по длине магистрального трубопровода для различных концентраций вводимой присадки. Path degradation of drug reducing agents (DRA) can cause changes in the main mode parameters of the main pipeline; pressure and flow rate, relative to the stable values, and complicate the adjustment of their deviations from the standard indicators. At the same time, up until now there has been no methodology for calculating pumping modes when using DRA that takes degradation into account. The authors set a goal to develop a methodology to mathematically describe the pressure distribution in the pipeline, taking into account the path degradation of the agent, as well as the parameters at different DRA concentrations. To achieve this goal, it is proposed to supplement the equation of the pressure head balance with the empirical dependency of agent efficiency on the length of the pipeline. When calculating the pressure at intermediate points of the route, it is proposed to use the pilot run data on the change in the DRA efficiency. To illustrate the application of the methodology, examples of pumping oil and petroleum products with added agents in various concentrations are discussed. On the basis of the experimental data, an adequate mathematical model of the DRA efficiency reduction along the length of the main pipeline for different concentrations of introduced agent was obtained.


Author(s):  
Akyene Tetteh ◽  
Sarah Dsane-Nsor

Background: Although the Internet boosts business profitability, without certain activities like efficient transportation, scheduling, products ordered via the Internet may reach their destination very late. The environmental problems (vehicle part disposal, carbon monoxide [CO], nitrogen oxide [NOx] and hydrocarbons [HC]) associated with transportation are mostly not accounted for by industries.Objectives: The main objective of this article is to minimising negative externalities cost in e-commerce environments.Method: The 0-1 mixed integer linear programming (0-1 MILP) model was used to model the problem statement. The result was further analysed using the externality percentage impact factor (EPIF).Results: The simulation results suggest that (1) The mode of ordering refined petroleum products does not impact on the cost of distribution, (2) an increase in private cost is directly proportional to the externality cost, (3) externality cost is largely controlled by the government and number of vehicles used in the distribution and this is in no way influenced by the mode of request (i.e. Internet or otherwise) and (4) externality cost may be reduce by using more ecofriendly fuel system.


2021 ◽  
Vol 13 (20) ◽  
pp. 11295
Author(s):  
Ali Babaeebazaz ◽  
Shiva Gorjian ◽  
Majid Amidpour

In this study, a small-scale two-stage multi-stage flash (MSF) desalination unit equipped with a vacuum pump and a solar parabolic collector (PDC) with a conical cavity receiver were integrated. To eliminate the need for heat exchangers, a water circulation circuit was designed in a way that the saline feedwater could directly flow through the receiver of the PDC. The system’s performance was examined during six days in July 2020, from 10:00 a.m. to 3:00 p.m., under two distinct scenarios of the MSF desalination operation under the vacuum (−10 kPa) and atmospheric pressure by considering three saline feedwater water flow rates of 0.7, 1 and 1.3 L/min. Furthermore, the performance of the solar PDC-MSF desalination plant was evaluated by conducting energy and exergy analyses. The results indicated that the intensity of solar radiation, which directly affects the top brine temperature (TBT), and the values of the saline feedwater flow rate have the most impact on productivity. The maximum productivity of 3.22 L per 5 h in a day was obtained when the temperature and saline feedwater flow rate were 94.25 °C (at the maximum solar radiation of 1015.3 W/m2) and 0.7 L/min, respectively, and the MSF was under vacuum pressure. Additionally, it was found that increasing the feedwater flow rate from 0.7 to 1.3 L/min reduces distillate production by 76.4% while applying the vacuum improves the productivity by about 34% at feedwater flow rate of 0.7 L/min. The exergy efficiency of the MSF unit was obtained as 0.07% with the highest share of exergy destruction in stages. The quality parameters of the produced distillate including pH, TDS, EC and DO were measured, ensuring they lie within the standard range for drinking water. Moreover, the cost of freshwater produced by the MSF plant varied from 37 US$/m3 to 1.5 US$/m3 when the treatment capacity increased to 8000 L/day.


Sign in / Sign up

Export Citation Format

Share Document