scholarly journals Emission Characteristics of Preheating Corn oil biodiesel blend in CI engine

2019 ◽  
Vol 8 (4) ◽  
pp. 8251-8254

Speedy industry development and population growth have an outcome in the vigorous demand for energy. The disorganize consumption of fossil fuels has to lead to the destruction of petroleum fuels. The exhaust emission from diesel engines has caused the most important impact in troubling the environment. To rise above these harms, the focus is necessary for substitute supply. Many researchers are finding alternative fuel for fossil fuels. The substitute for petroleum products should be environmentally friendly, easily available and technically feasible. Biodiesel is derived from vegetable oils through the transesterification process. The properties of corn oil methyl ester blends were obtained are similar to diesel. However, the viscosity of biodiesel was high compared to diesel and it affects ignition delay it causes incomplete combustion. To preheat the fuel is necessary with the help of exhaust gas and it enhances the combustion process. In this experimental analysis diesel fuel, 20% Biodiesel + 80% Diesel and 40% Biodiesel + 60% Diesel at three different temperatures of fuels are 35°C, 45°C and 55°C is tested.

Author(s):  
M. Parthasarathy ◽  
S. Ramkumar ◽  
J. Isaac Joshua Ramesh Lalvani

The petroleum fuels are continuously depleted, and they are a non-renewable source of the energy. Continuous usage of them leads to depletion of resource and an increase in global warming. Due to higher norms imposed on the fuel quality, the refining cost gets higher, and hence, obviously, the cost of the petroleum products would be higher. This leads to the search for alternate energy sources. The wide usage of CNG in the petrol engine is a common practice in the automobile sector, but the combined usage of CNG in dual fuel condition with the blend of ethanol and TME has not been practiced yet. The fuels used for this research are diesel, neat Tamanu biodiesel, blend of 10% ethanol with 90% Tamanu Methyl Ether (TMEE10) and CNG. Due to the higher compression ratio of CI engine, the usage of CNG in it will produce higher brake thermal efficiency. Due to the higher-octane rating of CNG, it wouldn’t be used as fuel in CI engine. If CNG is used as a fuel in CI engine, it leads to higher knock and vibrations. Hence, it is difficult to operate the engine, but an energy share of CNG can be used in a CI engine. In this research, CNG is inducted into the engine. The flow rate is varied, such as 0.015 kg/hr., 0.026 kg/hr., 0.035 kg/hr. and 0.046 kg/hr., while the blend of biodiesel and ethanol is injected directly into the combustion chamber. Since the calorific value of TME and ethanol is less when compared to diesel, CNG is inducted to enrich the overall energy mix of the fuel. Based on the experimental investigation, it is found that the combination of TMEE10 and CNG flow rate of 0.035 kg/hr. produces higher performance and better emission characteristics.


2019 ◽  
Vol 8 (4) ◽  
pp. 5202-5206

From last three decades scientists have explored the alternative fuel to substitute petroleum diesel for CI engine. One of the promising alternative fuel is biodiesel which has potential to substitute the conventional fossil fuels in near future. In the present study the author has considered Karanja biodiesel blended with n-octanol as an oxygenated blend to evaluate the performance, emissions and combustion features of diesel engine. The obtained results were improved relative to mineral diesel. The increment of BTE by 10.40% and decrement of BSEC by 13.20% were observed by using the blend KME80O20compared with neat JME at full load . Significant reduction in emission of HC-15.68%, CO-44.73%, smoke opacity -19.31%compared than diesel and reduction in NOx 3.04 % compare to neat KME were observed for KME80O20.This signifies improved combustion characteristics while utilizing n-octanol up to 20% as blend with KME in CI engine.


Author(s):  
L. Karikalan ◽  
S. Venugopal ◽  
S. Ramasubramanian ◽  
S. Jacob

Gradual depletion of the petroleum reserve and growing danger to the atmosphere from exhaust emission has created international attention in emerging substitute of non-gasoline fuels. Bio fuel is the better solution for CI engines to reduce fossil fuel consumption and to reduce the emission from exhaust gas. Biodiesel with exhaust gas recirculation has been chosen for this study. The outcome shows that the NOX emission is reduced as compared to the diesel fuel apart from the HC and CO emissions.


2021 ◽  
Vol 9 (2) ◽  
pp. 4-7
Author(s):  
Yuniarto Agus Winoko ◽  
Santoso ◽  
Khambali

The perfect combustion process can occur if the high compression pressure, proper ignition time, and suitable fuel air mixture. Suitable fuel air mixture can be obtained by heating the fuel to reduce its viscosity so the mixture is more homogeneous. Fuel heating can be done in various ways, such as by utilizing the heat of radiator water coming out of the engine. The purpose of the study is determine effect of the fuel heating to exhaust emission of gasoline engine 1800cc. The study uses experimental with the variable used pertamax with temperature 40°, 50°, 60°, and 70°. The dependent variable in the study is exhaust emission of gasoline engine. The results of the study indicate that fuel heating affects exhaust emissions. Temperature that affects the exhaust gas emissions at 60o C with the use of pertamax fuel.


2021 ◽  
Vol 13 (18) ◽  
pp. 10059
Author(s):  
Sai Manoj Rayapureddy ◽  
Jonas Matijošius ◽  
Alfredas Rimkus

Depletion in the levels of fossil fuels and increasing environmental concerns associated with the rise in consumption of conventional fuels are among the top global concerns. Finding an alternative sustainable fuel that matches the performance characteristics of diesel/petrol fuels as well as decreases the exhaust emissions has been a challenging task. After deliberate research, it is found that every alternative fuel is associated with different problems when they are used independently, thereby limiting its benefits. Scientists suggest that using different fuel blends might lead to sustainability. This article is the analysis of data obtained from the experimentation based on two different alternative fuels, Rapeseed Methyl Ester (RME)-based biodiesel and Rapeseed Oil (RO), blended with diesel (D) and Isopropanol (P) into three different proportions each. Tests were carried out in a compression ignition (CI) engine, and comparisons are based on the resulted performance and exhaust emission characteristics. The two different alternative fuels are blended into the following proportions to make six fuel mixtures, D50RME30P20, D50RME40P10, D50RME45P5, D50RO30P20, D50RO40P10 and D50RO45P5. The tests are carried out at different loads (BMEP) and are compared to that of pure diesel. Using the experimentation results, we also obtained the combustion characteristics of all fuel mixtures for further evaluation


2006 ◽  
Vol 124 (1) ◽  
pp. 21-37
Author(s):  
Władysław KOZAK ◽  
Maciej BAJERLEIN ◽  
Jarosław MARKOWSKI

In reference to the paper “The application of gas dissolved in fuel with a view to improve the mechanism of spraying“ [1], this article continues with the issue of spray mechanism improvements. It includes the results of tests with a one-cylinder CI engine powered with a solution of diesel oil and air. The proposed changes in the spray mechanism were evaluated contrastively. The analysis encompasses: indicator pressure in the cylinder as well as the maximum value of pressure increase rate, self-ignition delay angle, the time span of combustion, the content of carbon oxide, hydrocarbons, nitrogen oxides in exhaust gas, as well as the degree of exhaust gas blackening. Some positive changes in the combustion process, induced by the improvements in spray mechanism, have been shown.


2017 ◽  
Vol 68 (11) ◽  
pp. 2676-2681
Author(s):  
Mihaela Gabriela Dumitru ◽  
Dragos Tutunea

The purpose of this work was to investigate the physicochemical properties of watermelon seeds and oil and to find out if this oil is suitable and compatible with diesel engines. The results showed that the watermelon seeds had the maximum length (9.08 mm), width (5.71mm), thickness (2.0 mm), arithmetic mean diameter (5.59 mm), geometrical mean diameter (4.69 mm), sphericity (51.6%), surface area (69.07), volume 0.17 cm3 and moisture content 5.4%. The oil was liquid at room temperature, with a density and refractive index of 0.945 and 1.4731 respectively acidity value (1.9 mgNaOH/g), free fatty acid (0.95 mgNaOH), iodine value (120 mgI2/100g), saponification value (180 mgKOH/g), antiradical activity (46%), peroxide value (7.5 mEqO2/Kg), induction period (6.2 h), fatty acid: palmitic acid (13.1%), stearic acid (9.5 %), oleic acid (15.2 %) and linoleic acid (61.3%). Straight non food vegetable oils can offer a solution to fossil fuels by a cleaner burning with minimal adaptation of the engine. A single cylinder air cooled diesel engine Ruggerini RY 50 was used to measure emissions of various blends of watermelon oil (WO) and diesel fuel (WO10D90, WO20D80, WO30D70 and WO75D25). The physic-chemical properties of the oil influence the combustion process and emissions leading to the reduction of NOX and the increase in CO, CO2 and HC.


2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110209
Author(s):  
Zain Ul Hassan ◽  
Muhammad Usman ◽  
Muhammad Asim ◽  
Ali Hussain Kazim ◽  
Muhammad Farooq ◽  
...  

Despite a number of efforts to evaluate the utility of water-diesel emulsions (WED) in CI engine to improve its performance and reduce its emissions in search of alternative fuels to combat the higher prices and depleting resources of fossil fuels, no consistent results are available. Additionally, the noise emissions in the case of WED are not thoroughly discussed which motivated this research to analyze the performance and emission characteristics of WED. Brake thermal efficiency (BTE) and brake specific fuel consumption (BSFC) were calculated at 1600 rpm within 15%–75% of the load range. Similarly, the contents of NOx, CO, and HC, and level of noise and smoke were measured varying the percentage of water from 2% to 10% gradually for all values of loads. BTE in the case of water emulsified diesel was decreased gradually as the percentage of water increased accompanied by a gradual increase in BSFC. Thus, WED10 showed a maximum 13.08% lower value of BTE while BSFC was increased by 32.28%. However, NOx emissions (21.8%) and smoke (48%) were also reduced significantly in the case of WED10 along with an increase in the emissions of HC and CO and noise. The comparative analysis showed that the emulsified diesel can significantly reduce the emission of NOx and smoke, but it has a negative impact on the performance characteristics and HC, CO, and noise emissions which can be mitigated by trying more fuels variations such as biodiesel and using different water injection methods to decrease dependency on fossil fuels and improve the environmental impacts of CI engines.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2784
Author(s):  
Jerzy Cisek ◽  
Szymon Lesniak ◽  
Winicjusz Stanik ◽  
Włodzimierz Przybylski

The article presents the results of research on the influence of two fuel additives that selectively affect the combustion process in a diesel engine cylinder. The addition of NitrON® reduces the concentration of nitrogen oxides (NOx), due to a reduction in the kinetic combustion rate, at the cost of a slight increase in the concentration of particulate matter (PM) in the engine exhaust gas. The Reduxco® additive reduces PM emissions by increasing the diffusion combustion rate, while slightly increasing the NOx concentration in the engine exhaust gas. Research conducted by the authors confirmed that the simultaneous use of both of these additives in the fuel not only reduced both NOx and PM emissions in the exhaust gas but additionally the reduction of NOx and PM emissions was greater than the sum of the effects of these additives—the synergy effect. Findings indicated that the waveforms of the heat release rate (dQ/dα) responsible for the emission of NOx and PM in the exhaust gas differed for the four tested fuels in relation to the maximum value (selectively and independently in the kinetic and diffusion stage), and they were also phase shifted. Due to this, the heat release process Q(α) was characterized by a lower amount of heat released in the kinetic phase compared to fuel with NitrON® only and a greater amount of heat released in the diffusion phase compared to fuel with Reduxco® alone, which explained the lowest NOx and PM emissions in the exhaust gas at that time. For example for the NOx concentration in the engine exhaust: the Nitrocet® fuel additive (in the used amount of 1500 ppm) reduces the NOx concentration in the exhaust gas by 18% compared to the base fuel. The addition of a Reduxco® catalyst to the fuel (1500 ppm) unfortunately increases the NOx concentration by up to 20%. On the other hand, the combustion of the complete tested fuel, containing both additives simultaneously, is characterized, thanks to the synergy effect, by the lowest NOx concentration (reduction by 22% in relation to the base). For example for PM emissions: the Nitrocet® fuel additive does not significantly affect the PM emissions in the engine exhaust (up to a few per cent compared to the base fuel). The addition of a Reduxco® catalyst to the fuel greatly reduces PM emissions in the engine exhaust, up to 35% compared to the base fuel. On the other hand, the combustion of the complete tested fuel containing both additives simultaneously is characterized by the synergy effect with the lowest PM emission (reduction of 39% compared to the base fuel).


Proceedings ◽  
2021 ◽  
Vol 52 (1) ◽  
pp. 2
Author(s):  
Noé Anes García ◽  
Antonio Luis Marqués Sierra

In recent years, developments made to reduce the consequences generated using petroleum products have been strengthening; therefore, biofuels have become a requirement in different countries worldwide with the objective of reducing not only the high levels of current pollution, but also mitigating the effects generated by global warming. Despite the advances that have been made in the field of research on Jatropha, it is still necessary to carry out more detailed studies aimed at achieving a better use of it, identifying the influence of its physical–chemical properties in terms of quality levels, as well as determining its behavior when mixed with palm oil to achieve a biodiesel with better yields, whose impact will be reflected mainly in the environmental field, helping to mitigate the production of greenhouse gases that are produced by petroleum products. Although currently the biofuels sector has made important advances in research, it is necessary to deepen the physical–chemical analyses both in the production and storage processes of biodiesel, so that in the future it can be fully fulfilled with the energy requirements that are currently only achieved with fossil fuels, so it is necessary to direct this research toward the development of new products with improved characteristics, especially when exposed to prolonged storage times and low temperatures.


Sign in / Sign up

Export Citation Format

Share Document