scholarly journals Contamination and Pollution Studies of Heavy Metals in Sand Filter Media Waste Dumpsite in Yenagoa, Bayelsa State, Nigeria

2020 ◽  
Vol 24 (4) ◽  
pp. 581-588
Author(s):  
I.L. Ikoko ◽  
C.I. Osu ◽  
M. Horsfall

The contamination and pollution level of five Heavy Metals in spent Sand Filter Media [SFM] waste dumpsite was investigated to ascertain the contamination, pollution and possible migration in that environment. Samples were collected at the surface, 0.1m depth and 100m away from the dumpsite and analysed using Flame Atomic Absorption Spectrophotometer (FAAS) for concentration of Cr, Fe, Mn. Ni and Pb ions. Geochemical Pollution Indices were used to evaluate the contamination and pollution level of the HMs comparatively using the world shale average values and the experimental control value. Results obtained showed highest concentration of 12.50mg/kg for Fe and lowest detectable concentration of 0.2mg/kg for Ni at the top of the dumpsite. All five heavy metals had low concentrations compared to WHO and national standards for soil qualityboth at the top and 0.1m depth of the dumpsite. Percentage concentrations of the heavy metals at the top showed 78.81, 12.04, 7.88, 1.26% in the order Fe >>> Cr > Mn > Ni > Pb with the values of Ni and Cr at 0.1m depth slightly higher indicating some level of migration. Contamination Factor Cf, depicts very severe contamination to slight pollution at the top with minimum of 0.714 and maximum of 1.471. Degree of Contamination Cd, of <8 and Modified Degree of Contamination mCd <1.5 showed low contamination. The pollution load index, PLI values of < 50 depicts that no drastic rectification measure was needed which concludes that the SFM dumpsite was contaminated but technically not polluted. Keywords: Surface mobility, Yenagoa, heavy metal contamination, Pollution indices, Bayelsa State

2021 ◽  
Vol 6 (1) ◽  
pp. 146-152
Author(s):  
M. Z. Karkana ◽  
◽  
Mujahid Ajah Matazu

The research was conducted to assess the level of heavy metals contamination using single and integrated pollution indices in soils around municipal solid waste dumpsites of Kano Metropolis, Kano State, Nigeria. Forty two soil samples were collected from seven municipal solid waste dumpsites of Kano metropolis using circular plot method. A stainless hand auger at a depth of (0 to 15) top soils and sub-surface soils (15-30cm) depth were collected and analyzed with Flame atomic absorption spectrophotometer to determine the heavy metal concentration. The mean concentration (mg/kg) of heavy metals from the depth of (15-30 cm) were observed to follow a decreasing order Pb (7.71)>Zn (0.50) > Ni (0.45) > Cr (0.31) > Cd (0.025) while for surface soils (0- 15cm) the mean concentration were in the following order: Pb (1.77) > Ni (0.49) > Zn (0.30) > Cr (0.27) > Cd (0.012).The results showed that calculated CF and Er recorded that investigated soil samples are uncontaminated with Zn, Pb, Cd, Cr and Pb and Ni. The pollution load index (PLI) was less than unity showing that there was minimum pollution in the studied dumpsite. The potential ecological risk showed that soil samples were in the class of low contaminated with the studied heavy metals. The results showed that concentrations of heavy metals of soil samples from dumpsites location at waste dumpsites of Kano Metropolis were within limits of European Union (2002) standards. Keywords: Heavy metals, single and integrated pollution indices Kano, Municipal dumpsites


Author(s):  
K. O. Ondoo ◽  
J. K. Kiptoo ◽  
A. O. Onditi ◽  
S. M. Shivaji ◽  
J. K. Ogilo

Agricultural activities, discharge of raw sewage into farms and the rise in urbanization have greatly contributed to soil pollution. During the rainy season, surface runoff from farms find their way into water bodies and deposits these contaminants into Rivers and Lakes which poses a threat to both aquatic and terrestrial organisms that depend on that water source. The objective of this research was to determine the level of anions and heavy metals from sediments in River Sio, Busia County, Kenya. Five sediment samples were taken from five sampling points and the levels of anions and heavy metals in them determined. Anions were determined using Shimadzu 1800 UV/visible spectrophotometer while heavy metals were determined using Shimadzu 6200 flame atomic absorption spectrophotometer (AAS). Copper, lead and nickel were above the allowed WHO limits while cadmium was below detection limit. The levels of nitrates, phosphates and chlorides were higher during the wet season due to surface runoff that carried these nutrients from the farms and deposited them on the bottom of the River. The levels of heavy metals were high during the dry season due to evaporation of water from the River, leading to an increase in the analyte concentration during the dry season. High levels of copper and nickel in the sediments points to the use of herbicides and pesticides in farming and washing of vehicles and motorcycles on the banks of the River. According to Igeo nickel showed moderate pollution during the dry season. The contamination factor for lead was very high during the dry season, while pollution load index confirmed pollution due to anthropogenic activities in sampling sites 1 – 4 during the dry season and no pollution due to anthropogenic activities during the wet season.  The study recommends reduced use of inorganic fertilizers in order to save the River from the danger of eutrophication. Excessive use of agrochemicals such as herbicides and pesticides should be discouraged. In addition, pesticide leaching and the level of microbes in soil and sediments should be considered for further research


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Sharhabil Musa Yahaya ◽  
Fatima Abubakar ◽  
Nafiu Abdu

AbstractThe incidence of heavy metal contamination in Zamfara State, northern Nigeria, due to artisanal mining in some villages has resulted in the pollution of a vast area of land and water. This study evaluated the extent of environmental risks caused by heavy metals. It involved five (5) villages (Bagega, Dareta, Sunke, Tunga, and Abare) where mining activities were taking place and Anka town with no record of mining activities served as control. In each of the five villages, three sites (3) were identified as a mining site, processing site, and village making a total of sixteen (16) sites. Bulked soil samples were collected in triplicate and analyzed for iron, lead, cadmium, chromium, zinc, and nickel using flame atomic absorption spectrophotometry. Measured concentrations of the heavy metals in soils were then used to calculate the pollution and ecological risk pose by heavy metals. Their concentrations were in the order Fe > Pb > Cr > Zn > Cd > Ni, with Pb and Cd having a concentration higher than permissible levels for soils and accounted for 98.64% of the total potential ecological risk. Also, all the different pollution indices examined showed that all the sites were polluted with Cd, and all the processing sites were polluted with Pb. This reveals that processing sites pose more risk to heavy metal contamination. Correlation analysis showed a highly significant (p < 0.001) positive correlation between Pb and Zn, Cr and Ni, and a significant (p < 0.01) positive correlation between Fe and Pb, Zn and Cr. The principal component analysis suggested that Pb, Zn, Cr, and Ni likely originated from the same source, i.e., mining activities, and Fe and Cd originated from the abundant parent material in the study area.


2021 ◽  
pp. 77-83
Author(s):  
Chee Kong YAP ◽  
Wan Hee Cheng ◽  
Aziran Yaacob ◽  
Zulhilmi Hassan ◽  
Rosimah Nulit ◽  
...  

Biomonitoring of heavy metals is an important part of the ecotoxicological study. However, without the application of the metal data to reflect human wellbeing, it is considered the low impact on the society. In this study, the heavy metals in green mustard Brassica rapa var. parachinensis were collected from Sikamat (Negeri Sembilan in 2013), Kg. Sitiawan (Perak in 2016), and Ara Kuda (Penang in 2016) of Peninsular Malaysia, were determined. The samples are analyzed for the concentrations of Cu, Fe, Ni, Pb, and Zn by using the flame atomic absorption spectrophotometer. For the leafy edible part, the metal concentrations (mg/kg dry weight) ranged from 16.1-18.5 for Cu, 145-207 for Fe, 1.02-1.64 for Ni, 0.90-2.73 for Pb, and 74.0-203 for Zn. These metal data were assessed for human health risks. It was found that all the values of target hazard quotients for Cu, Fe, Ni, Pb, and Zn in both adults and children were less than 1.00. This exhibited there were no non-carcinogenic risks of the five metals through the intake of the Brassica from the present study. This could indicate that the accumulation of metals and pollution threshold is below the limit of causing hazardous effects to consumers. Nonetheless, regular assessment of health risks of heavy metals in this vegetable needs to be conducted from time to time these vegetables are prone to continuous heavy metal contamination.


2019 ◽  
Vol 24 (1) ◽  
pp. 6-18 ◽  
Author(s):  
Sudarshana Shakya ◽  
Samikshya Baral ◽  
Priya Belbase ◽  
Mohd Nur E Alam Siddique ◽  
Abd Naser HJ Samoh ◽  
...  

A total of forty seven street dust samples, collected from five different types of land use viz., industrial, urban, heavy traffic road, residential and undisturbed areas (control) of Kathmandu district (Nepal), were subjected to characterize the physico-chemical parameters such as pH, electrical conductance (EC), total alkalinity (T. Alk), total organic carbon (TOC) and particle size distribution. Four heavy metals of Cd, Cu, Pb and Zn were determined in dust samples using flame atomic absorption spectrophotometer (FAAS). It was found that all types of dust samples possessed alkaline nature along with variation in EC, T. Alk and TOC values. Results revealed that the dust of industrial areas contained high concentrations of Zn (143.3 mg/kg) and Cu (106.42 mg/kg), whereas the heavy traffic areas were mainly affected by Cd (0.90 mg/kg) and Pb (70.08 mg/kg). The average metal concentrations of Cd, Cu, Pb and Zn in dust of all the types of land use in Kathmandu were found to be 0.73, 68.86, 51.46 and 104.30 mg/kg and their average metal enrichment factors were 2.28, 5.50, 1.92 and 3.17, respectively. The results were also compared against heavy metals status in street dust from various cities/countries around the world. Pollution indices such as contamination factor (CF), degree of contamination (CD) and geo-accumulation index (Igeo) showed different classes of metal contamination in street dust of Kathmandu indicating traffic emission, automobiles, construction and demolition activities and other anthropogenic activities as the potential sources.


2021 ◽  
Vol 11 (6) ◽  
pp. 2492
Author(s):  
Pablo Fierro ◽  
Jaime Tapia ◽  
Carlos Bertrán ◽  
Cristina Acuña ◽  
Luis Vargas-Chacoff

Estuaries worldwide have been severely degraded and become reservoirs for many types of pollutants, such as heavy metals. This study investigated the levels of Cd, Cu, Mn, Ni, Pb, and Zn in water and whole fish. We sampled 40 juvenile silversides Odontesthes regia and 41 juvenile puye Galaxias maculatus from the Valdivia River estuary, adjacent to the urban area in southern South America (Chile). Samples were analyzed using a flame atomic absorption spectrophotometer. In water samples, metals except Zn were mostly below the detection limits and all metals were below the maximum levels established by local guidelines in this estuary. In whole fish samples, concentrations of Cu, Zn, Pb, Mn, and Cd were significantly higher in puyes than in silversides. Additionally, Zn, Pb, and Mn were correlated to body length and weight in puyes, whereas Cd was correlated to body length in silversides. The mean concentration of heavy metals in silverside and puyes were higher than those reported in the literature. In silversides, all heavy metal levels were below the limits permitted by current legislation (FAO), whereas in puyes Pb and Cd levels were above the recommended maximum level established by international guidelines, therefore putting the human population at risk.


Author(s):  
Sanja Przulj ◽  
Ana Radojicic ◽  
Milica Kasanin-Grubin ◽  
Dusica Pesevic ◽  
Sanja Stojadinovic ◽  
...  

Heavy metals are naturally occurring elements, but they are regarded as significant environmental pollutants due to high density and high toxicity even at low concentrations. The aim of this paper is evaluation of the pollution level of heavy metals in the river and riverbank sediments as well as the estimation of their origin and spatial differences along the course of the Vrbas River through Banja Luka. The concentrations of metals have been assessed using the Inductively coupled plasma - optical emission spectrometry and Advanced mercury analyzer for mercury determination. Anthropogenic impact on heavy metal concentration in sediments was estimated by calculating pollution indices: Geoaccumulation index (Igeo), Contamination factor (Cf), Pollution Load Index (PLI), and Potential Ecological Risk Index (Er). Obtained results indicate that there is no statistically significant spatial difference in metal concentration, indicating that heavy metals in sediments have a constant source. The anthropogenic impact expressed by values of pollution indices showed that sites are generally uncontaminated by Co, Cr, and V and moderately contaminated by Zn, Cu, and Ni. On the contrary, lead, mercury and cadmium pose the highest ecological risk. The anthropogenic source of Pb, Hg and Cd is industry, municipal waste and the combustion of fossil fuels. Obtained results demonstrate the high ecological risk and need for environmental monitoring, supporting an efficient strategy to reduce local pollution and contamination of the investigated system.


2021 ◽  
Vol 2 (8) ◽  
pp. 696-704
Author(s):  
Hassan Malvandi

Background: Sediments in the aquatic ecosystems can be used as suitable indicators for monitoring contaminants. Then, objectives of this study were to evaluate the concentration of heavy metals in the surface sediments of the Mohammad Abad River, to determine the degree of pollution of heavy metals in sediments using some major contamination indices; to identify the major sources (anthropogenic or natural sources) of the studied metals; and to evaluate the “reference river” of the river under study for ecotoxicology studies. Methods: Samples of sediment were taken from six sites of the river. The present study, eleven heavy metals (chromium, manganese, iron, cobalt, nickel, zinc, selenium, magnesium, silver, aluminum and arsenic) were studied. Results: Comparison of metal concentrations with those of Sediment Quality Guidelines (SQGs) showed no association with harmful biological effects for the heavy metals studied except for Se and As. The results of the contamination factor index showed low pollution levels for most metals (Cr, Mn, Fe, Co, Ni, Zn and Al), moderate pollution levels for As, and very high pollution levels for Se. The degree of contamination (Cd) and modified degree of contamination (mCd), showing the total contamination of elements, demonstrated very high degree contamination status in the study area. According to the index of quantification of contamination, the values of Cr, Mn, Fe, Ni, Zn and Al were derived mainly from geogenic sources of enrichment, while the values for Se and As were enriched by anthropogenic source of enrichment. Conclusion: These findings suggest that continuous monitoring of Se and As in sediment and organisms of the Mohammad Abad River should be directed to evaluate the threat of these elements to the public health and to the ecology of the river under study.


2019 ◽  
Vol 11 (3) ◽  
pp. 563 ◽  
Author(s):  
Ewa Wojciechowska ◽  
Nicole Nawrot ◽  
Jolanta Walkusz-Miotk ◽  
Karolina Matej-Łukowicz ◽  
Ksenia Pazdro

Sediments of two urban streams in northern Poland outflowing to the Baltic Sea were assessed to explain the spatial variation in relation to urbanization level of the catchment, the role of retention tanks (RTs) and identification of pollution level. During the 3 month period of investigation sediment samples were collected from the inflow (IN) and outflow (OUT) of six RTs located on streams for flood protection. Six heavy metals (HMs) were investigated: Cu, Pb, Zn, Cd, Ni, Cr. The assessment of four geochemical enrichment indices used to quantify contamination of HMs in the sediments at IN and OUT samples was carried out. Contamination factor (CF), pollution load index (PLI), geoaccumulation index (Igeo) and potential ecological risk (RI) were calculated and the indices usefulness was assessed. Also, the hazard quotient (HQ) was calculated to assess health risk associated with dredging works. In sediments from RTs where paved surfaces constituted more than 70% of the catchment the HMs concentrations were from one to three times higher for Ni and from two to 143 times higher for Cu in comparison to soft catchment results. The extremely high Cu concentration (1114 mg/kg d.w.) found in sediments at RT Orłowska IN was most likely associated with large area of roofs covered with copper sheet. Calculation of CF, PLI, Igeo, RI, HQ indicators allows for a complex and multi-dimensional assessment of sediment status. Among these, CF and PLI classified the analyzed sediments as most polluted. Basing on the sedimentary HMs concentrations the health risk level via dermal exposure pathway was assessed as low.


Sign in / Sign up

Export Citation Format

Share Document