Reduction of Salmonella enterica Contamination on Grape Tomatoes by Washing with Thyme Oil, Thymol, and Carvacrol as Compared with Chlorine Treatment

2010 ◽  
Vol 73 (12) ◽  
pp. 2270-2275 ◽  
Author(s):  
YINGJIAN LU ◽  
CHANGQING WU

In recent years, multistate outbreaks of Salmonella enterica serovars were traced to tomatoes and resulted in serious economic loss for the tomato industry and decreased consumer confidence in the safety of tomato produce. Purified compounds derived from essential oils such as thymol and carvacrol had wide inhibitory effects against foodborne pathogens including Salmonella. The objective of this study was to determine the antimicrobial activities of thymol, carvacrol, and thyme oil against Salmonella on grape tomatoes. Surface-inoculated grape tomatoes were washed with 4% ethanol, 200 ppm of chlorine, or one of six washing solutions (thymol [0.2 and 0.4 mg/ml], thyme oil [1 and 2 mg/ml], and carvacrol [0.2 and 0.4 mg/ml]) for 5 or 10 min. There was no significant difference in the reduction of S. enterica serovars when different washing times were used (P > 0.05). Thymol (especially at the concentration of 0.4 mg/ml) was the most effective (P < 0.05) among the three natural antimicrobial agents, which achieved >4.1-log reductions of S. enterica serovars Typhimurium, Kentucky, Senftenberg, and Enteritidis on grape tomatoes after a 5-min washing and >4.3-log reductions after a 10-min washing. A >4.6-log reduction in the S. enterica populations in comparison to control was observed with the use of thymol solutions. The uses of these antimicrobial agents achieved significant log reductions of Salmonella on inoculated grape tomatoes and decreased dramatically the risk of potential transmission of pathogens from tomatoes to washing solutions. None of these antimicrobial agents decreased the total phenolic and ascorbic acid content, nor did any of them change the color and pH values or affect the taste, aroma, or visual quality of grape tomatoes. Therefore, 0.4 mg/ml thymol has great potential to be an alternative to chlorine-based washing solution for fresh produce.

Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5234
Author(s):  
Thanawat Pattananandecha ◽  
Sutasinee Apichai ◽  
Sasithorn Sirilun ◽  
Jakaphun Julsrigival ◽  
Kasirawat Sawangrat ◽  
...  

Five glutinous purple rice cultivars and non-glutinous purple rice cultivated in different altitudes in the north of Thailand were collected. The samples were extracted using ethanol and determined for anthocyanins using HPLC. The total phenolic content (TPC), total flavonoid content (TFC), and the antioxidant, anti-inflammatory, and antimicrobial activities against foodborne pathogens were investigated. The highland glutinous cultivar named Khao’ Gam Luem-Phua (KGLP) extract had significantly high levels of cyanidin 3-O-glucoside, peonidin 3-O-glucoside, delphinidin 3-O-glucoside, TPC, and TFC, as well as exerting a potent antioxidant activity through ABTS assay (524.26 ± 4.63 VCEAC, mg l-ascorbic-ascorbic/g extract), lipid peroxidation (IC50 = 19.70 ± 0.31 µg/mL), superoxide anions (IC50 = 11.20 ± 0.25 µg/mL), nitric oxide (IC50 = 17.12 ± 0.56 µg/mL), a suppression effect on nitric oxide (IC50 = 18.32 ± 0.82 µg/mL), and an inducible nitric oxide synthase production (IC50 = 23.43 ± 1.21 µg/mL) in combined lipopolysaccharide-interferon-γ-activated RAW 264.7 murine macrophage cells. Additionally, KGLP also exhibited antimicrobial activity against foodborne pathogens, Staphylococcus aureus, Escherichia coli, Salmonella Enteritidis, and Vibrio parahaemolyticus. These results indicate that Thai glutinous purple rice cultivated on the highland could be a potent natural source of antioxidants, anti-inflammatories, and antimicrobial agents for use as a natural active pharmaceutical ingredient in functional food and nutraceutical products.


Antibiotics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 660
Author(s):  
Xuebin Xu ◽  
Silpak Biswas ◽  
Guimin Gu ◽  
Mohammed Elbediwi ◽  
Yan Li ◽  
...  

Salmonella spp. are recognized as important foodborne pathogens globally. Salmonella enterica serovar Rissen is one of the important Salmonella serovars linked with swine products in numerous countries and can transmit to humans by food chain contamination. Worldwide emerging S. Rissen is considered as one of the most common pathogens to cause human salmonellosis. The objective of this study was to determine the antimicrobial resistance properties and patterns of Salmonella Rissen isolates obtained from humans, animals, animal-derived food products, and the environment in China. Between 2016 and 2019, a total of 311 S. Rissen isolates from different provinces or province-level cities in China were included here. Bacterial isolates were characterized by serotyping and antimicrobial susceptibility testing. Minimum inhibitory concentration (MIC) values of 14 clinically relevant antimicrobials were obtained by broth microdilution method. S. Rissen isolates from humans were found dominant (67%; 208/311). S. Rissen isolates obtained from human patients were mostly found with diarrhea. Other S. Rissen isolates were acquired from food (22%; 69/311), animals (8%; 25/311), and the environment (3%; 9/311). Most of the isolates were resistant to tetracycline, trimethoprim-sulfamethoxazole, chloramphenicol, streptomycin, sulfisoxazole, and ampicillin. The S. Rissen isolates showed susceptibility against ceftriaxone, ceftiofur, gentamicin, nalidixic acid, ciprofloxacin, and azithromycin. In total, 92% of the S. Rissen isolates were multidrug-resistant and ASSuT (27%), ACT (25%), ACSSuT (22%), ACSSuTAmc (11%), and ACSSuTFox (7%) patterns were among the most prevalent antibiotic resistance patterns found in this study. The widespread dissemination of antimicrobial resistance could have emerged from misuse of antimicrobial agents in animal husbandry in China. These findings could be useful for rational antimicrobial usage against Salmonella Rissen infections.


2009 ◽  
Vol 55 (8) ◽  
pp. 955-966 ◽  
Author(s):  
Anil K. Mangalappalli-Illathu ◽  
John R. Lawrence ◽  
Darren R. Korber

Cellular morphology, exopolymer chemistry, and protein expression of shearable and nonshearable fractions of Salmonella enterica serovar Enteritidis biofilms were examined. Biofilms were grown at a laminar flow velocity of 0.07 cm·s–1 for ~120 h, resulting in biofilms with a thickness (mean ± SD) of 43 ± 24 µm. An empirically determined shear-inducing flow (1.33 cm·s–1) was then applied for 5 min, effectively reducing biofilm thickness by ~70% and leaving 13 ± 6 µm of nonshearable material and allowing fractionation of biofilm material into shearable and nonshearable regions. In situ lectin binding analyses revealed that there was no significant difference in the exopolymer glycoconjugate composition of the shearable and nonshearable biofilm zones. Length to width indices of cells from nonshearable and shearable biofilm regions as well as planktonic cells from biofilm effluent and continuous culture were determined to be 3.2, 2.3, 2.2, and 1.7, respectively, indicating that the cells in the shearable fraction were morphologically more similar to planktonic cells than the cells in the nonshearable biofilm fraction. Enhanced expression of proteins involved in cold shock response, adaptation, and broad regulatory functions (CspA, GrcA, and Hns, respectively) in cells from the shearable region as well as protein translation and modification and enhanced expression of protein involved in heat shock response and chaperonin function (DnaK) in cells from the nonshearable region revealed that the physiological status of cells in the two biofilm regions was distinct. This was also reflected in the different morphologies of cells from the two biofilm zones. Stratified patterns of cell metabolism and morphology in biofilms, obtained using shear-induced biofilm fractionation, may yield important information of how cells of deeply embedded biofilm bacteria survive imposed conditions of stress such as treatment with antimicrobial agents or antibiotics.


Author(s):  
İlkin Şengün ◽  
Gülden Kılıç

This work reports the survival status of Listeria monocytogenes, Escherichia coli O157:H7, Staphylococcus aureus and Salmonella Typhimurium in homemade fig and mulberry vinegar. Each pathogen was separately inoculated in vinegar samples at approximately 7 log CFU/mL. The survival status of pathogens was examined at 20°C for 0, 15, 30 and 60 min, and 4, 8 and 24 h. The residual populations after 24 h were below detection limit for all species assayed. S. Typhimurium was much more sensitive to mulberry vinegar ( 6 log reduction in 30 min) than it is to fig vinegar ( 6 log reduction in 24 h). L. monocytogenes had an overall quite different behaviour, being the most sensitive species to fig vinegar ( 6 log reduction in 4 h) while being the most resistant one to mulberry vinegar ( 6 log reduction in 24 h). The total phenolic content of fig vinegar (767 mg GAE/L) was higher than mulberry vinegar (557.5 mg GAE/L). The results exhibited that antimicrobial activity of vinegar is mainly related to the contact time, test pathogen and physicochemical properties of vinegar.


2016 ◽  
Vol 87 (2) ◽  
pp. 307-312 ◽  
Author(s):  
Shin-Hye Chung ◽  
Soha Cho ◽  
Kyungsun Kim ◽  
Bum-Soon Lim ◽  
Sug-Joon Ahn

ABSTRACT Objective: To compare the antimicrobial and physical properties of experimental primers containing chlorhexidine (CHX) or ursolic acid (UA) with a commercial primer. Materials and Methods: Two antibacterial agents, 3 mg each of CHX and UA were incorporated respectively into 1 ml of Transbond XT primer (TX) to form antibacterial primers, TX-CHX and TX-UA. The antimicrobial activity of the three primers (TX, TX-CHX, and TX-UA) against Streptococcus mutans in both planktonic and biofilm phases was analyzed by determining minimum inhibitory and bactericidal concentrations and by performing growth and biofilm assays. Growth and biofilm assays were performed in both the absence and presence of thermocycling in a water tank to analyze the effects of water aging on the antimicrobial activities of primers. After bonding brackets onto bovine incisors using the primers, shear bond strength and mode of fracture were analyzed to compare physical properties. Results: TX-CHX had stronger antimicrobial activity against S. mutans in the planktonic and biofilm phases than did TX or TX-UA. When applied, TX-CHX completely inhibited the growth and biofilm formation of S. mutans. In addition, the antimicrobial activity of TX-CHX was maintained after thermocycling. However, TX-UA did not show significant antimicrobial activity compared with TX. There was no significant difference in either shear bond strength or bond failure interface among the primers. Conclusion: Incorporation of CHX into an orthodontic primer may help prevent enamel demineralization around surfaces without compromising its physical properties.


2021 ◽  
Vol 1 (1) ◽  
pp. 89-103
Author(s):  
Kundan Shah ◽  
Peter M. Muriana

Foodborne pathogens are known to adhere strongly to surfaces and can form biofilms in food processing facilities; therefore, their potential to contaminate manufactured foods underscores the importance of sanitation. The objectives of this study were to (1) examine the efficacy of a new-generation sanitizer (Decon7) on Staphylococcus and Pseudomonas biofilms, (2) identify biofilm bacteria from workers’ boots in relation to previous sanitizer chemistry, (3) validate the efficacy of Decon7 on biofilm from workers’ boots from an abattoir/food processing environment, and (4) compare the sensitivity of isolated boot biofilm bacteria to new- and early (Bi-Quat)-generation QAC sanitizers. Decon7 was applied at two concentrations (5%, 10%) and was shown to be effective within 1 min of exposure against enhanced biofilms of Staphylococcus spp. and Pseudomonas spp. in 96-well microplates. Decon7 was also used to treat workers’ boots that had accumulated high levels of biofilm bacteria due to ineffective sanitization. Bacteria isolated before enzyme/sanitizer treatment were identified through 16S rRNA PCR and DNA sequencing. All treatments were carried out in triplicate and analyzed by one-way RM-ANOVA or ANOVA using the Holm–Sidak test for pairwise multiple comparisons to determine significant differences (p < 0.05). The data show a significant difference between Decon7 sanitizer treatment and untreated control groups. There was a ~4–5 log reduction in Staphylococcus spp. and Pseudomonas spp. (microplate assay) within the first 1 min of treatment and also a > 3-log reduction in the bacterial population observed in the biofilms from workers’ boots. The new next-generation QAC sanitizers are more effective than prior QAC sanitizers, and enzyme pre-treatment can facilitate biofilm sanitizer penetration on food contact surfaces. The rotation of sanitizer chemistries may prevent the selective retention of chemistry-tolerant microorganisms in processing facilities.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242156
Author(s):  
Yan Chen ◽  
Hong Liu ◽  
Min Chen ◽  
He-Yang Sun ◽  
Yong-Ning Wu

Information on the burden of disease due to foodborne pathogens in China is quite limited. To understand the incidence of foodborne gastroenteritis due to non-typhoidal Salmonella enterica and Vibrio parahaemolyticus, population survey and sentinel hospital surveillance were conducted during July 2010 to June 2011 in Shanghai, east China, and a model for calculating disease burden was established. The multiplier for gastroenteritis caused by these pathogens was estimated at 59 [95% confidence interval (CI) 30–102]. Annual incidence per 100,000 population in Shanghai was estimated as 48 (95% CI 24–83) and 183 (95% CI 93–317) cases for foodborne non-typhoidal salmonellosis and V. parahaemolyticus gastroenteritis, respectively, illustrating that bacterial gastroenteritis due to these two pathogens poses a substantial health burden. There is a significant difference between our simulated incidence and the data actually reported for foodborne diseases, indicating significant underreporting and underdiagnosis of non-typhoidal S. enterica and V. parahaemolyticus gastroenteritis in the surveillance area. The present research demonstrates basic situation of the health burden caused by major foodborne pathogens in the surveillance area. Enhanced laboratory-based sentinel hospital surveillance is one of the effective ways to monitor food safety in east China.


2020 ◽  
Vol 83 (7) ◽  
pp. 1125-1136
Author(s):  
MAHTA MOUSSAVI ◽  
JOHN C. FRELKA ◽  
IAN M. HILDEBRANDT ◽  
BRADLEY P. MARKS ◽  
LINDA J. HARRIS

ABSTRACT Process control validations require knowledge of the resistance of the pathogen(s) of concern to the target treatment and, in some cases, the relative resistance of surrogate organisms. Selected strains of Escherichia coli O157:H7 (five strains), Listeria monocytogenes (five strains), and Salmonella enterica (five strains) as well as Salmonella Enteritidis phage type (PT) 30 and nonpathogenic Enterococcus faecium NRRL B-2354 were inoculated separately (as individual strains) onto inshell pistachios. The thermal tolerance of each strain was compared via treatment of inoculated pistachios to hot oil (121°C) or hot water (80°C) for 1 min. Survivor curves in hot oil or hot water (0.5 to 6 min, n = 6 to 15) were determined for one or two of the most resistant strains of each pathogen, as well as E. faecium NRRL B-2354 and Salmonella Enteritidis PT 30, and the Weibull model was fit to the data. A pilot-scale air-impingement oven was used to compare the thermal tolerance of E. faecium NRRL B-2354 and Salmonella Enteritidis PT 30 on pistachios with or without a brining pretreatment and at either dry (no steam) or 30% humidity (v/v) oven conditions. No significant difference in the time to a 4-log reduction in hot oil or hot water was predicted for any of the strains evaluated, on the basis of the 95% confidence interval. In the pilot-scale oven, E. faecium NRRL B-2354 was more thermally resistant than Salmonella in a broad set of differing treatments, treatment times, and temperatures. Salmonella is a suitable target pathogen of concern in pistachios for thermal processes because no other pathogen tested was more thermally resistant under the conditions evaluated. E. faecium NRRL B-2354 was at least as thermally resistant as Salmonella under all conditions evaluated, making it a good potential surrogate for Salmonella on pistachios. HIGHLIGHTS


Molecules ◽  
2019 ◽  
Vol 24 (14) ◽  
pp. 2666 ◽  
Author(s):  
Anca Toiu ◽  
Laurian Vlase ◽  
Dan Cristian Vodnar ◽  
Ana-Maria Gheldiu ◽  
Ilioara Oniga

Solidago species are often used in traditional medicine as anti-inflammatory, diuretic, wound-healing and antimicrobial agents. Still, the bioactive compounds and biological activities of some species have not been studied. The present work aimed to investigate the polyphenolic profile and the biological properties of Solidago graminifolia L. Salisb., a poorly explored medicinal plant. The hydroalcoholic extracts from aerial parts were evaluated for total phenolic content (TPC), total flavonoid content (TFC) and the polyphenolic compounds were investigated by HPLC-MS. The antioxidant potential in vitro was determined using DPPH and FRAP assays. Antibacterial and antifungal effects were evaluated by dilution assays and MIC, MBC and MFC were calculated. The results showed that Solidago graminifolia aerial parts contain an important amount of total phenolics (192.69 mg GAE/g) and flavonoids (151.41 mg RE/g), with chlorogenic acid and quercitrin as major constituents. The hydroalcoholic extracts showed promising antioxidant and antimicrobial potential, with potent antibacterial activity against Staphylococcus aureus and important antifungal effect against Candida albicans and C. parapsilosis. The obtained results indicated that the aerial parts of Solidago graminifolia could be used as novel resource of phytochemicals in herbal preparations with antioxidant and antimicrobial activities.


2019 ◽  
Vol 8 (1) ◽  
pp. 10-16
Author(s):  
Bahar Ahmadi ◽  
Aazam Aarabi

In this study, rice pedicle extracts (Oriza sativa. L.)  were obtained by high pressure reactor using water, and sodium hydroxide at temperatures of 70, 90, 110 130 °C.  The extracts were evaluated for total phenolic content, antioxidant activity and growth inhibition of Escherichia coli and Candida albicans. Their results were compared to Soxhlet extraction by using ethanol (95%v/v). The results showed that the use of different temperatures had a significant effect on the percentage of phenolic compounds, and the alkali method had a significant effect on the amount of phenolic compounds rather than water extraction (128.72 and 51.79 GA/g, respectively). The highest antimicrobial activity levels were obtained in ethanol extracts that the extracts have inhibitory effect on E. coli. None of extracts had inhibitory effect on Candida albicans. The results provided the evidence that the studied rice (Oriza sativa. L.) pedicle extract might be potential sources of phenolic compound, natural antioxidant and antimicrobial agents.


Sign in / Sign up

Export Citation Format

Share Document