Reduction of Listeria monocytogenes Biofilms on Stainless Steel and Polystyrene Surfaces by Essential Oils†

2012 ◽  
Vol 75 (7) ◽  
pp. 1332-1337 ◽  
Author(s):  
MONIL A. DESAI ◽  
KAMLESH A. SONI ◽  
RAMAKRISHNA NANNAPANENI ◽  
M. WES SCHILLING ◽  
JUAN L. SILVA

Plant-derived essential oils were tested for their ability to eliminate biofilms of Listeria monocytogenes on polystyrene and stainless steel surfaces. Various concentrations of essential oils were tested with different contact times on biofilms of various ages. Preliminarily screening of nine essential oils and related phenolic compounds in a disk diffusion assay revealed that thyme oil, oregano oil, and carvacrol had the highest antimicrobial activity. Further screening of these three compounds against 21 L. monocytogenes strains representing all 13 serotypes indicated some strain-specific variations in antimicrobial activity. For 1-day-old biofilms of mixed L. monocytogenes strains produced at 22°C on polystyrene microtiter plates, only 0.1% concentrations of thyme oil, oregano oil, and carvacrol were needed to eliminate 7 log CFU per well. On the stainless steel coupons, a 0.5% concentration of these compounds was adequate to completely eliminate 4-day-old biofilms at 7 log CFU per coupon. Our findings indicate that these compounds are potential candidates for elimination of L. monocytogenes biofilms on stainless steel and polystyrene surfaces.

Proceedings ◽  
2020 ◽  
Vol 66 (1) ◽  
pp. 9
Author(s):  
Yoram Gerchman

Plants have been explored and used as sources for antimicrobial extract and compounds for many years, but galls—specialized structures forms on such by diversity of organisms—have been explored much less. Aphid galls host many insects in closed, humid and sugar rich environments for long periods. We have tested the antimicrobial properties of Slavum wertheimae aphid galls on Pistacia atlantica. Secondary metabolites were extracted from leaves and galls with organic solvents, and essential oils with Clevenger, and tested by disk diffusion assay and volatile effect on bacteria and fungi, respectively. The results demonstrated that gall extracts/essential oils had much stronger activity against the diversity of bacteria and fungi. The large diversity of galls suggest they could be explored as source for novel compounds.


2018 ◽  
Vol 68 (1) ◽  
pp. 95-107 ◽  
Author(s):  
Szweda Piotr ◽  
Zalewska Magdalena ◽  
Pilch Joanna ◽  
Kot Barbara ◽  
Milewski Sławomir

Abstract Antibiotic therapy of staphylococcal mastitis is characterized by significantly lower cure rates compared to infections caused by other microorganisms. Thus, it is necessary to search for new, alternative, non-antibiotic agents that are effective in the eradication of these bacteria. The aim of our research was to investigate the antimicrobial, especially anti-staphylococcal potential of a large collection (n=36) of essential oils (EOs). Investigation of the antimicrobial activity of tested oils was determined by using a serial, twofold dilution method in 96-wells microtiter plates under conditions recommended by the Clinical and Laboratory Standards Institute (CLSI). The preliminary analysis revealed that six oils, namely: Manuka, Thyme, Geranium, Cedar, Cinnamon (from bark) and Patchouli exhibited the highest activity against reference strains of bacteria. Significant anti-staphylococcal potential of these oils has been also confirmed for a group of 18 Staphylococcus aureus, 8 Staphylococcus epidermidis and 5 Staphylococcus xylosus strains isolated from cases of bovine mastitis. Especially high activity was observed for Cedar, Patchouli, Thyme and Manuka oils. The MIC (Minimal Inhibitory Concentration) values for Patchouli oil were in the concentrations range of 0.01 to 0.313% (v/v). The three other oils inhibited the growth of staphylococci isolated from mastitis in the concentrations range of 0.01 to 0.625% (v/v). Oils isolated from Cinnamomum cassia and Pelargonium graveolens revealed a bit lower, but still satisfactory activity (MIC values in the concentrations range of 0.02 to 1.25% (v/v) and from 0.078 to 1.25% (v/v), respectively). In many cases a slightly higher concentration of oils was required to obtain the bactericidal effect in comparison to growth inhibition. The time – kill kinetic assay revealed that the bactericidal effect was achieved after two hours incubation of the reference strain S. aureus PCM 2051 cells with Thyme oil at concentration equal to 2xMIC (1.25% (v/v)) or MIC (0.625% (v/v)). A slightly lower activity was observed in the case of Cinnamon oil, the bactericidal effect was achieved after 8 hours of incubation. The results of our research clearly indicate that some essential oils exhibit a promising antimicrobial activity and can be considered as alternative antistaphylococcal agents.


Antibiotics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 272 ◽  
Author(s):  
Ramona Iseppi ◽  
Alessandro Di Cerbo ◽  
Piero Aloisi ◽  
Mattia Manelli ◽  
Veronica Pellesi ◽  
...  

The aim of this study was to analyze the antibacterial activity of four essential oils (EOs), Melaleuca alternifolia, Eucalyptus globulus, Mentha piperita, and Thymus vulgaris, in preventing the development and spread of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae, metallo-beta-lactamase (MBL)-producing Pseudomonas aeruginosa and carbapenemase (KPC)-producing Klebsiella pneumoniae. A total of 60 strains were obtained from the stock collection from the Microbiology Laboratory of Hesperia Hospital, Modena, Italy. Twenty ESBL-producing E. coli, 5 K. pneumoniae, 13 KPC-producing K. pneumoniae, and 20 MBL-producing P. aeruginosa were cultured and reconfirmed as ESBL and carbapenamase producers. Polymerase chain reaction was used for the detection of genes responsible for antibiotic resistance (ESBL and KPC/MBL). Antibacterial activity of the EOs was determined using the agar disk diffusion assay, and minimal inhibitory concentrations (MICs) were also evaluated. Lastly, adhesion capability and biofilm formation on polystyrene and glass surfaces were studied in 24 randomly selected strains. M. alternifolia and T. vulgaris EOs showed the best antibacterial activity against all tested strains and, as revealed by agar disk diffusion assay, M. alternifolia was the most effective, even at low concentrations. This effect was also confirmed by MICs, with values ranging from 0.5 to 16 µg/mL and from 1 to 16 µg/mL, for M. alternifolia and T. vulgaris EOs, respectively. The EOs’ antibacterial activity compared to antibiotics confirmed M. alternifolia EO as the best antibacterial agent. T. vulgaris EO also showed a good antibacterial activity with MICs lower than both reference antibiotics. Lastly, a significant anti-biofilm activity was observed for the two EOs (*P < 0.05 and **P < 0.01 for M. alternifolia and T. vulgaris EOs, respectively). A good antibacterial and anti-biofilm activity of M. alternifolia and T. vulgaris EOs against all selected strains was observed, thus demonstrating a future possible use of these EOs to treat infections caused by ESBL/carbapenemase-producing strains, even in association with antibiotics.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Fengmin Li ◽  
Zhihan Xian ◽  
Hee Jin Kwon ◽  
Jiyoon Yoo ◽  
Laurel Burall ◽  
...  

Abstract Background An effective environmental sampling method involves the use of a transport/neutralizing broth with the ability to neutralize sanitizer residues that are collected during sampling and to maintain viability of stressed Listeria monocytogenes (Lm) cells. Results We applied Lm onto stainless steel surfaces and then subjected Lm to desiccation stress for 16–18 h at room temperature (RT, 21–24 °C). This was followed by the subsequent application of Whisper™ V, a quaternary ammonium compound (QAC)-based sanitizer, diluted to 400 ppm and 8000 ppm of active quat, for 6 h. We then sampled Lm with sponges pre-moistened in three transport broths, Dey/Engley (D/E) broth, Letheen broth and HiCap™ broth, to generate environmental samples that contained sanitizer residues and low levels of stressed Lm, which were subsequently analyzed by an enrichment-based method. This scheme conformed with validation guidelines of AOAC International by using 20 environmental test portions per broth that contained low levels of Lm such that not all test portions were positive (i.e., fractional positive). We showed that D/E broth, Letheen broth and HiCap™ broth performed similarly when no quat or 400 ppm of quat was applied to the Lm contaminating stainless steel surfaces. However, when 8000 ppm of quat was applied, Letheen broth did not effectively neutralize the QAC in the samples. These comparisons were performed on samples stored under three conditions after collection to replicate scenarios of sample transport, RT for 2 h, 4 °C for 24 h and 4 °C for 72 h. Comparisons under the three different scenarios generally reached the same conclusions. In addition, we further demonstrated that storing Letheen and HiCap™ broths at RT for two months before sampling did not reduce their capacity to neutralize sanitizers. Conclusions We developed a scheme to evaluate the ability of transport broths to neutralize QAC sanitizers. The three transport broths performed similarly with a commonly used concentration of quat, but Letheen broth could not effectively neutralize a very high concentration of QAC. The performance of transport broths was not significantly affected under the assessed pre-sampling and post-sampling storage conditions.


2020 ◽  
Vol 63 (5) ◽  
pp. 1401-1407
Author(s):  
Bog Eum Lee ◽  
Youngsang You ◽  
Won Choi ◽  
Eun-mi Hong ◽  
Marisa M. Wall ◽  
...  

HighlightsNanoporous superhydrophobic surfaces were fabricated using electrochemical etching and Teflon coating.Adhesion of Listeria monocytogenes to the nanoengineered stainless steel surfaces was reduced.Self-cleanable food-contact surfaces prevent bacterial attachment and subsequent biofilm formation.Abstract. Bacterial attachment on solid surfaces and subsequent biofilm formation is a significant problem in the food industry. Superhydrophobic surfaces have potential to prevent bacterial adhesion by minimizing the contact area between bacterial cells and the surface. In this study, stainless steel-based superhydrophobic surfaces were fabricated by manipulating nanostructures with electrochemical etching and polytetrafluoroethylene (PTFE) film. The formation of nanostructures on stainless steel surfaces was characterized by field emission scanning electron microscopy (FESEM). The stainless steel surfaces etched at 10 V for 5 min and at 10 V for 10 min with PTFE deposition resulted in average water contact angles of 154° ±4° with pore diameters of 50 nm. In addition, adhesion of Listeria monocytogenes was decreased by up to 99% compared to the bare substrate. These findings demonstrate the potential for the development of antibacterial surfaces by combining nanoporous patterns with PTFE films. Keywords: Electrochemical etching, PTFE, Nanoengineered surface, L. monocytogenes, Superhydrophobic.


2003 ◽  
Vol 69 (7) ◽  
pp. 4329-4331 ◽  
Author(s):  
Belinda Galeano ◽  
Emily Korff ◽  
Wayne L. Nicholson

ABSTRACT Stainless steel surfaces coated with paints containing a silver- and zinc-containing zeolite (AgION antimicrobial) were assayed in comparison to uncoated stainless steel for antimicrobial activity against vegetative cells and spores of three Bacillus species, namely, B. anthracis Sterne, B. cereus T, and B. subtilis 168. Under the test conditions (25°C and 80% relative humidity), the zeolite coating produced approximately 3 log10 inactivation of vegetative cells within a 5- to 24-h period, but viability of spores of the three species was not significantly affected.


2007 ◽  
Vol 70 (7) ◽  
pp. 1569-1578 ◽  
Author(s):  
ODILE TRESSE ◽  
KELLY SHANNON ◽  
ANTHONY PINON ◽  
PIERRE MALLE ◽  
MICHÈLE VIALETTE ◽  
...  

One hundred one strains of Listeria monocytogenes isolated from seafood and cheese industry samples and from patients with listeriosis were assessed using a microtiter plate method for adhesion to polystyrene and stainless steel surfaces. The adhesion rate for these strains ranged from 3.10 to 35.29% with an inoculum of 8 × 108 cells per well. A strong correlation was found between adhesion to polystyrene and stainless steel microtiter plates, indicating that the intrinsic ability of L. monocytogenes to adhere to inert surfaces is stronger than the influence of the surface's physicochemical properties. The clinical strains were less adherent to inert surfaces than were the industrial strains. By integrating other factors such as location of the industrial strains, contamination type of the clinical strains, serotype, and pulsotype into the analysis, some weak but significant differences were noted. For the industrial isolates, the number of cells attached to both surfaces differed significantly depending on whether they were isolated from food or food-processing environments in the seafood and cheese industry. For clinical isolates, sporadic strains exhibited greater adhesion to polystyrene than did epidemic strains. Strains belonging to the pulsed-field gel electrophoretype clusters A and M (lineages II and I, respectively) were less able to adhere to polystyrene and stainless steel than were strains in the more common clusters.


1994 ◽  
Vol 57 (8) ◽  
pp. 720-724 ◽  
Author(s):  
KWANG Y. KIM ◽  
JOSEPH F. FRANK

Listeria monocytogenes cells grown in chemically defined minimal medium (D10), tryptic soy broth (TSB), and modifications of these media were used to determine the effect of growth nutrients on attachment ability. Stainless steel surfaces were submerged in various cell suspensions at 21°C for 4 h, and the numbers of attached cells were compared. Cells grown in D10 showed approximately 50-fold higher attachment than those grown in TSB. Addition of components of D10 to TSB did not affect the attachment ability of cells grown in TSB. The only modifications of D10, which affected attachment ability were a 10-fold increase of ammonium chloride concentration and a 1/10 reduction in iron, both of which resulted in decreases in attachment ability to one third of the D10 control. Replacement of glucose in D10 with mannose, cellobiose, fructose or trehalose did not effect cell attachment. Replacement of nitrogen components in D10 with tryptone decreased cell attachment to the equivalent level of cells grown in TSB. The reduced attachment ability of TSB-grown cells was not the result of hydrolyzed protein absorbing to the cell surface.


2020 ◽  
Vol 83 (11) ◽  
pp. 1974-1982
Author(s):  
GERARDO MEDINA ◽  
HARSHITA CHAUDHARY ◽  
YANG QIU ◽  
YUCHEN NAN ◽  
ARGENIS RODAS-GONZÁLEZ ◽  
...  

ABSTRACT The goal of this research was to evaluate the efficacy of a novel rechargeable nonleaching polycationic N-halamine coating applied to stainless steel food contact surfaces to reduce Listeria monocytogenes contamination on ready-to-eat (RTE) foods. Four L. monocytogenes strains were inoculated onto the charged (C; chlorine activated) or noncharged (NC) N-halamine–coated steel coupon surfaces that were either intact or scratched. After inoculation, test surfaces were incubated at 2, 10, and 25°C for 0, 48, and 72 h. L. monocytogenes transfer from coated adulterated surfaces to RTE meat (beef sausages and roast beef) was also tested at 2°C. L. monocytogenes on both intact-C and scratched-C surfaces was significantly reduced at all temperatures; however, in the presence of organic material, these coatings were more effective for reducing L. monocytogenes at 2 and 10°C than at 25°C (P &lt; 0.05). In contrast, on NC intact and scratched surfaces, reduction at 25°C increased (P &lt; 0.05), decreasing the difference in L. monocytogenes levels between charged and noncharged intact and scratched surfaces at this temperature. Overall, greater L. monocytogenes reduction was achieved on intact-C and scratched-C (4.1 ± 0.19 log CFU/cm2) than on intact-NC and scratched-NC (2.3 ± 0.19 log CFU/cm2) surfaces at all temperatures (P &lt; 0.05). The combination of surface condition and chlorine with coupons exposed for 2 h at 2°C in the presence of an organic load (50% meat purge) did not significantly affect the bactericidal efficacy of the N-halamine coating. Regarding transfer to RTE meat, an overall 3.7-log reduction in L. monocytogenes was observed in sausages and roast beef. These findings suggest that a novel rechargeable N-halamine coating on stainless steel surfaces can inactivate L. monocytogenes. HIGHLIGHTS


Sign in / Sign up

Export Citation Format

Share Document