Characterization and evaluation of probiotic potential in vitro and in situ of Lacticaseibacillus paracasei isolated from tenate cheese

Author(s):  
Reyna N Falfán-Cortes ◽  
Nancy Mora-Peñaflor ◽  
Carlos A Gómez-Aldapa ◽  
Esmeralda Rangel-Vargas ◽  
Otilio A Acevedo-Sandoval ◽  
...  

The objectives of this investigation were a) to isolate bacteria from different foods (dairy products, fruits, and vegetables) and evaluate their probiotic potential and b) to select, identify, and characterize the strain with the highest probiotic potential. From 14 food samples, a total of 117 strains were isolated; however, only 42 (T1 to T42) showed the morphology (gram-positive, coco, and bacillar form) and were catalase- and oxidase-negative to be considered as a presumptive lactic acid bacteria (LAB). The antagonistic activity of the 42 strains was evaluated on Escherichia coli (O157:H7E09), Listeria monocytogenes (ATCC 19115), Staphylococcus aureus (ATCC 25923), and Salmonella enterica serotype Typhimurium (ATCC 14028). The strains with the highest antagonistic activity were nine isolates from the following: pulque (T1), sprouted beans (T26), ranchero cheese (T30, T31, T32, T33, T35, T36), and tenate cheese (T40) with inhibition zones from 17.0 ± 1.2 to 19.3 ± 2.8 mm. Based on the antagonistic activity against pathogenic bacteria and resistance to low pH and bile salts, strain T40 exhibited the highest probiotic potential. Using the 16S rRNA technique, strain T40 was identified as Lacticaseibacillus paracasei (the previous taxonomic nomenclature was Lactobacillus paracasei , prior to the nomenclature change in April 2020); this strain presented no resistance to ampicillin, gentamicin, erythromycin, and tetracycline. The antagonistic activity was evaluated in situ (fresh cheese) against pathogenic bacteria, evidencing the probiotic potential of L. paracasei . Finally, Lacticaseibacillus paracasei isolated from tenate cheese showed characteristics as a probiotic microorganism and high potential in food technology.

2021 ◽  
Vol 19 (9) ◽  
pp. 38-45
Author(s):  
Hussein H. Al-Turnachy ◽  
Fadhilk. alibraheemi ◽  
Ahmed Abd Alreda Madhloom ◽  
Zahraa Yosif Motaweq ◽  
Nibras Yahya Abdulla

The present study was included the assessment of the antimicrobial activity of AgNPs synthesized by Punica granatum peel extract against pathogenic bacteria by testing warm aqueous P. granatum peel extract and silver nanoparticles. Punica granatum indicated potency for AgNP extracellular nanobiosynthesis after addition of silver nitrate (AgNO3) 4mM to the extract supernatant, in both concentrations (100mg and 50mg). The biogenic AgNPs showed potency to inhibit both gram-negative and gram-positive bacterial growth. Zons of inhibition in (mm) was lesser in gram-positive than gram-negative bacteria. The resulted phytogenic AgNPs gave higher biological activity than warm aqueous Punica granatum peel extract. The inhibition zone of the phytogenic AgNPs on E. coli reached 17.53, 22.35, and 26.06 mm at (0.1, 0.5, and 1) mg/ml respectively. While inhibition zones of Punica warm aqueous extract reached 5.33, 10.63, and 16.08 mm at the same concentrations. phytogenic AgNPs gave smaller inhibition zones in gram-positive than gram- negative. Cytotoxic activity of the phytogenic AgNPs was assayed in vitro agaist human blood erythrocytes (RBCs), spectroscopic results showed absorbance at 540 nm hemolysis was observed. In general, AgNPs showed least RBCs hemolysis percentage, at 1 mg/ml concentration, hemolysis percentage was (4.50%). This study, concluded that the Punica granatum peel extract has the power of synthses of AgNPs characterized by broad spectrum antimicrobial activity with cyto-toxicity proportional to AgNPs concentration.


Author(s):  
Kamni Rajput ◽  
Ramesh Chandra Dubey

In this paper, an investigation on lactic acid bacterial isolates from ethnic goat raw milk samples were examined for their probiotic potential and safety parameters. For this purpose, isolated bacterial cultures were screened based on certain parameters viz., sugar fermentation, tolerance to temperature, salt, low pH, bile salts, and phenol resistance. After that, these bacterial cultures were more estimated in vitro for auto-aggregation, cell surface hydrophobicity, response to simulated stomach duodenum channel, antibiotic resistance, and antimicrobial activity. Besides, probiotic traits show the absence of gelatinase and hemolytic activity supports its safety. The isolate G24 showed good viability at different pH, bile concentration, phenol resistance and response to simulated stomach duodenum passage but it did not show gelatinase and hemolytic activities. Isolate G24 was susceptible to amikacin, carbenicillin, kanamycin, ciprofloxacin, co-trimazine, nitrofurantoin, streptomycin, and tetracycline. Isolate G24 also exhibited antimicrobial action against five common pathogenic bacteria, such as Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Listeria monocytogens, and Salmonella typhimurium. It displayed the maximum auto-aggregation, cell surface hydrophobicity to different hydrocarbons. Following molecular characterization the isolate G24 was identified as Enterococcus hirae with 16S rRNA gene sequencing and phylogeny. E. hirae G24 bears the excellent properties of probiotics.


Antibiotics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 89 ◽  
Author(s):  
Shahabe Abullais Saquib ◽  
Nabeeh Abdullah AlQahtani ◽  
Irfan Ahmad ◽  
Mohammed Abdul Kader ◽  
Sami Saeed Al Shahrani ◽  
...  

Background: In the past few decades focus of research has been toward herbal medicines because of growing bacterial resistance and side effects of antimicrobial agents. The extract derived from the plants may increase the efficacy of antibiotics when used in combination against pathogenic bacteria. In the current study, the synergistic antibacterial efficacy of plant extracts in combination with antibiotics has been assessed on selected periodontal pathogens. Methods: Ethanolic extracts were prepared from Salvadora persica (Miswak) and Cinnamomum zeylanicum (Ceylon cinnamon), by the soxhalate method. Plaque samples were collected from clinical periodontitis patients to isolate and grow the periodontal pathobionts under favorable conditions. Susceptibility of bacteria to the extracts was assessed by gauging the diameter of the inhibition zones. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of plant extracts were determined against each bacterium. Synergistic activity of plants extract in combination with antibiotics against the bacteria was also assessed by measuring the diameter of the inhibition zones. Results: Ethanolic extract of both the plants showed an inhibitory effect on the proliferation and growth of all four strains of periodontal pathobionts. Maximum antibacterial activity was exhibited by C. zeylanicum against Tannerella forsythia (MIC = 1.56 ± 0.24 mg/mL, MBC = 6.25 ± 0.68 mg/mL), whereas among all the studied groups the minimum activity was reported by C. zeylanicum against Aggregatibacter actinomycetemcomitans the (MIC = 12.5 ± 3.25 mg/mL, MBC = 75 ± 8.23 mg/mL). Combination of herbal extracts with different antibiotics revealed a synergistic antibacterial effect. The best synergism was exhibited by S. persica with metronidazole against A. actinomycetemcomitans (27 ± 1.78). Conclusions: Current in vitro study showed variable antibacterial activity by experimented herbal extracts against periodontal pathobionts. The synergistic test showed significant antibacterial activity when plant extracts were combined with antibiotics.


2002 ◽  
Vol 2002 ◽  
pp. 80-80
Author(s):  
K. Hillman

The ability of the porcine intestinal microflora to resist the establishment of pathogenic bacteria has been demonstrated previously (Hillman et al, 1994). Subsequent work has shown that certain intestinal lactobacilli react to the presence of a culture filtrate derived from a coliform pathogen by increasing their antagonistic activity towards that pathogen (Hillman and Robertson, unpublished), indicating the presence of a quorum-sensing or related mechanism. The current experiment was devised to determine whether a similar effect could be produced within the entire porcine colonic microflora, using an in vitro simulation system.


2018 ◽  
Vol 108 ◽  
pp. 172-182 ◽  
Author(s):  
Whyara Karoline Almeida da Costa ◽  
Geany Targino de Souza ◽  
Larissa Ramalho Brandão ◽  
Rafael Cardoso de Lima ◽  
Estefânia Fernandes Garcia ◽  
...  

2021 ◽  
Vol 72 (1) ◽  
pp. 2703
Author(s):  
I VAR ◽  
S UZUNLU ◽  
I DEĞIRMENCI

The use of natural food additives is currently a rising trend. In the present study, the aim was to determine the antimicrobial effects of plum, pomegranate, Seville orange and sumac sauces on E. coli O157:H7,E. coli type I,Listeriamonocytogenes, Listeria ivanovii, Salmonella Typhimurium and Staphylococcus aureus. Different concentrations (1%, 10%, 100%, v/v) of the sauces were tested on the studied bacteria in vitro using the agar diffusion and minimal inhibition concentration (MIC) methods. The results showed that the sumac sauce had the highest antimicrobial activity. The Seville orange, plum and pomegranate sauces also exerted antimicrobial activity in descending order. The antimicrobial activity of the fruit sauces was more effective at a concentration of 100% than at 10% and 1%, v/v. The most inhibitory effect was recorded for sumac sauce at a concentration of 100% (v/v) on L.monocytogenesand E. coli O157:H7. The findings of the MIC method aligned with the agar diffusion method. In addition, the in situ(food method) antimicrobial effect of the sauces on the indigenous microflora of chicken breast samples sold in stores was determined. Chicken samples hosting aerobic mesophilic bacteria, coliforms and E. coli were treated for two hours at 4 °C with plum, pomegranate, Seville orange and sumac sauces and were then monitored. The findings revealed that the Seville orange and sumac sauces were the most effective in reducing the indigenous microbial growth on the chicken samples. The plum sauce showed higher antimicrobial activity than pomegranate sauce. The phenolic content and acidity of the samples significantly (P< 0.05) affected the antimicrobial activity both in vitro (agar diffusion and MIC) and in situ (chilled chicken breast). In conclusion, the sumac and Seville orange sauces were found to be the most promising natural antibacterial agents, and their use could be recommended, for example, in catering services to reduce the risk of foodborne illness.


2021 ◽  
Author(s):  
Renan Eugênio Araujo Piraine ◽  
Gustavo M Retzlaf ◽  
Vitória S. Gonçalves ◽  
Rodrigo C Cunha ◽  
Fabio Pereira Leivas Leite

Abstract Non-conventional yeasts can be isolated from a wide range of environmental sources, often found in beverage industry in mixed fermentations, in which the microorganisms’ inoculum usually is not fully known. It is important to know starter cultures, since in addition to favoring reproducibility, other properties can be discovered. Thus, the objective of this work was to identify and characterize yeasts isolated from environment, evaluating their probiotic potential and possible use in brewery. Isolates were obtained from flowers, fruits, leaves and mixed-fermentation beers, being identified by PCR. Yeasts with promising activity were evaluated regarding their growth under different pHs, temperature and presence of organic acids. To explore probiotic potential, in vitro tests were performed of antimicrobial activity and co-aggregation with food pathogens, auto-aggregation, and survival in simulated gastrointestinal tract conditions. In our study, Pichia kluyveri (LAR001), Hanseniaspora uvarum (PIT001) and Candida intermedia (ORQ001) were selected among 20 isolates. P. kluyveri was the only one that tolerated pH 2.5. Lactic acid was not inhibitory, while acetic acid and incubation at 37 °C had a partially inhibitory effect on yeasts growth. All yeasts tolerated α-acids from hops and NaCl up to 1%. It is suggested that isolates are able to adhere to intestinal cells and influence positively the organism in combating pathogens, as they showed auto-aggregation rates above 99% and antagonistic activity to pathogenic bacteria. The yeasts tolerated gastric environment conditions, however were more sensitive to pancreatic conditions. We conclude that isolated non-conventional yeasts showed probiotic potential and promising application in beer fermentation.


2012 ◽  
Vol 79 (3) ◽  
pp. 808-815 ◽  
Author(s):  
Zhihui Xu ◽  
Jiahui Shao ◽  
Bing Li ◽  
Xin Yan ◽  
Qirong Shen ◽  
...  

ABSTRACTBacillus amyloliquefaciensstrains are capable of suppressing soilborne pathogens through the secretion of an array of lipopeptides and root colonization, and biofilm formation ability is considered a prerequisite for efficient root colonization. In this study, we report that one of the lipopeptide compounds (bacillomycin D) produced by the rhizosphere strainBacillus amyloliquefaciensSQR9 not only plays a vital role in the antagonistic activity againstFusarium oxysporumbut also affects the expression of the genes involved in biofilm formation. When the bacillomycin D and fengycin synthesis pathways were individually disrupted, mutant SQR9M1, which was deficient in the production of bacillomycin D, only showed minor antagonistic activity againstF. oxysporum, but another mutant, SQR9M2, which was deficient in production of fengycin, showed antagonistic activity equivalent to that of the wild-type strain ofB. amyloliquefaciensSQR9. The results fromin vitro, rootin situ, and quantitative reverse transcription-PCR studies demonstrated that bacillomycin D contributes to the establishment of biofilms. Interestingly, the addition of bacillomycin D could significantly increase the expression levels ofkinCgene, but KinC activation is not triggered by leaking of potassium. These findings suggest that bacillomycin D contributes not only to biocontrol activity but also to biofilm formation in strainB. amyloliquefaciensSQR9.


Sign in / Sign up

Export Citation Format

Share Document