scholarly journals Characterization of a Reservoir Fluid Based on an Analysis of Intrinsic Properties Using the Adaptive Batzle-Wang Method in Field “M”

2019 ◽  
Vol 17 (2) ◽  
Author(s):  
M. Syamsu Rosid ◽  
Muhammad` Iksan ◽  
Reza Wardhana ◽  
M. Wahdanadi Haidar

The physical properties and phases of a fluid under reservoir conditions are different from those under surface conditions. The value of a fluid property may change as a result of changes in pressure and temperature. An analysis of the intrinsic properties of fluids is carried out to obtain a fluid model that corresponds to fluid conditions in a reservoir. This study uses the Adaptive Batzle-Wang model, which combines thermodynamic relationships, empirical data trends, and experimental fluid data from the laboratory to estimate the effects of pressure and temperature on fluid properties. The Adaptive Batzle-Wang method is used because the usual Batzle-Wang method is less suitable for describing the physical properties of a fluid under the conditions in the field studied here. The Batzle-Wang fluid model therefore needs to be modified to obtain a fluid model that adjusts to the fluid conditions in each study area. In this paper, the Adaptive Batzle-Wang model is used to model three types of fluid i.e. oil, gas, and water. By making use of data on the intrinsic fluid properties such as the specific gravity of the gases (G), the Gas-Oil Ratio (GOR), the Oil FVF (Bo), the API values, the Salinity, and the Fluid Density obtained from laboratory experiments, the Batzle-Wang fluid model is converted into the Adaptive Batzle-Wang model by adding equations for the intrinsic fluid properties under the pressure and temperature conditions in the field reservoir. The results obtained are the values of the bulk modulus (K), the density (ρ), and the P-wave velocity (Vp) of the fluid under reservoir conditions. The correlation coefficient of the Adaptive Batzle-Wang model with the fluid data from the laboratory experiments is 0.95. The model is well able to calculate the fluid properties corresponding to the conditions in this field reservoir. The model also generates a unique value for the fluid properties in each study area. So, it can adjust to the pressure and temperature conditions of the field reservoir under study. The Adaptive Batzle-Wang method can therefore be applied to fields for which laboratory fluid data is available, especially fields with a high reservoir pressure and temperature. The results of the fluid modeling can then be used for rock physics and Fluid Replacement Model analysis.

2021 ◽  
Vol 40 (10) ◽  
pp. 716-722
Author(s):  
Yangjun (Kevin) Liu ◽  
Michelle Ellis ◽  
Mohamed El-Toukhy ◽  
Jonathan Hernandez

We present a basin-wide rock-physics analysis of reservoir rocks and fluid properties in Campeche Basin. Reservoir data from discovery wells are analyzed in terms of their relationship between P-wave velocity, density, porosity, clay content, Poisson's ratio (PR), and P-impedance (IP). The fluid properties are computed by using in-situ pressure, temperature, American Petroleum Institute gravity, gas-oil ratio, and volume of gas, oil, and water. Oil- and gas-saturated reservoir sands show strong PR anomalies compared to modeled water sand at equivalent depth. This suggests that PR anomalies can be used as a direct hydrocarbon indicator in the Tertiary sands in Campeche Basin. However, false PR anomalies due to residual gas or oil exist and compose about 30% of the total anomalies. The impact of fluid properties on IP and PR is calibrated using more than 30 discovery wells. These calibrated relationships between fluid properties and PR can be used to guide or constrain amplitude variation with offset inversion for better pore fluid discrimination.


2021 ◽  
Vol 62 (3a) ◽  
pp. 1-9
Author(s):  
An Hai Nguyen ◽  
Duc Hoang Nguyen ◽  

For oil and gas fields with complex fluid behavior, the PVT properties of the fluid continuously change spatially in the reservoir (both in spacial and depth). While using common method to determine the composition variation and to build the fluid model more accurately under reservoir conditions, it is necessary to divide into sub-regions, and to collect and analyze numerous fluid samples. This paper presents the application Equation of state in thermodynamic equilibrium has provided an effective method for modeling the fluid properties of such oil and gas reservoir. In this way, it is possible to model the fluid properties for each specific location in the space (continuous change) to minimize the need to carry out the sampling and analysis of additional fluid samples.


2021 ◽  
Vol 16 (1) ◽  
pp. 251-260
Author(s):  
Yongwang ZHANG ◽  
◽  
Shanbin JIANG

The dissolution of feldspar is the main mechanism for the formation of secondary pores in deep sandstone reservoirs, which is controlled by pore fluid properties and fluid dynamics. The simulation experiment analyzed the effect of different fluid/rock ratios (hydrodynamics) on the orthoclase dissolution kinetics under reservoir diagenesis conditions. The experimental temperature was set at 100°C; the solutions were divided into acetic acid solutions and hydrochloric acid solutions, with pH values at 2 and 4; the reaction time was between 30 days and 80 days. The experimental results show that the fluid/rock ratio is an important factor controlling the feldspar dissolution. The higher the fluid/rock ratio, the stronger the fluid’s ability to dissolve at orthoclase, and the more the release of Al and Si. With the increase of fluid/rock ratio, it is possible to observe more noticeable dissolution characteristics from the feldspar morphology. The lower the fluid/rock ratio, the higher the concentration of Al and Si ions released by orthoclase dissolution, and the easier it is to cause the precipitation of clay minerals, which is not conducive to the improvement of reservoir physical properties. The fluid/rock ratio is an important controlling factor on the formation and distribution of authigenic minerals such as kaolinite. The research results are of great implications in the feldspar dissolution to form secondary pores in the burial diagenesis process. In the sandstone-shale contacts or sandstone reservoirs with good initial physical properties, the strong fluid flow is conducive to the secondary pores formation. The experimental findings are helpful for us to understand better the process and mechanism of feldspar alteration and secondary pores formation.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Shengjie Li ◽  
Daxing Wang ◽  
Mengbo Zhang

Abstract Elastic constants derived from seismic-scale measurements are often used to infer subsurface petrophysical properties based on rock-physics relationships established from either theoretic model or core-scale measurements. However, the spatial heterogeneity of rock physical properties at the local scale has a significant impact on this relation. To understand this problem, we built a scaled physical model comprised of artificial porous layers with different pore fluids. After conducting a two-dimensional marine seismic survey over the physical model, the physical modeling data ware then used to retrieve the elastic constants of the layered package. The seismic-scale results reveal that the identification of reservoir fluid properties is improved using elastic constants that is more sensitive to pore fluid properties. The results of numerical simulations show that Lamé moduli provide more insight into rock properties and pore-fluid contents than P-wave impedances, and that the relationship between the upscaled elastic constants and the effective fluid bulk moduli at the seismic scale is usually not perfectly preserved at the reservoir scale. To interpret seismic-scale elastic constants for petrophysical properties, the rock physics relationship need to be carefully calibrated. The findings will help us understand the upscaling of rock-physics transform, which will improve the accuracy of geological property predictions from seismic-scale elastic constants.


2021 ◽  
Vol 11 (5) ◽  
pp. 2113-2125
Author(s):  
Chenzhi Huang ◽  
Xingde Zhang ◽  
Shuang Liu ◽  
Nianyin Li ◽  
Jia Kang ◽  
...  

AbstractThe development and stimulation of oil and gas fields are inseparable from the experimental analysis of reservoir rocks. Large number of experiments, poor reservoir properties and thin reservoir thickness will lead to insufficient number of cores, which restricts the experimental evaluation effect of cores. Digital rock physics (DRP) can solve these problems well. This paper presents a rapid, simple, and practical method to establish the pore structure and lithology of DRP based on laboratory experiments. First, a core is scanned by computed tomography (CT) scanning technology, and filtering back-projection reconstruction method is used to test the core visualization. Subsequently, three-dimensional median filtering technology is used to eliminate noise signals after scanning, and the maximum interclass variance method is used to segment the rock skeleton and pore. Based on X-ray diffraction technology, the distribution of minerals in the rock core is studied by combining the processed CT scan data. The core pore size distribution is analyzed by the mercury intrusion method, and the core pore size distribution with spatial correlation is constructed by the kriging interpolation method. Based on the analysis of the core particle-size distribution by the screening method, the shape of the rock particle is assumed to be a more practical irregular polyhedron; considering this shape and the mineral distribution, the DRP pore structure and lithology are finally established. The DRP porosity calculated by MATLAB software is 32.4%, and the core porosity measured in a nuclear magnetic resonance experiment is 29.9%; thus, the accuracy of the model is validated. Further, the method of simulating the process of physical and chemical changes by using the digital core is proposed for further study.


Geophysics ◽  
1997 ◽  
Vol 62 (1) ◽  
pp. 309-318 ◽  
Author(s):  
Jorge O. Parra

The transversely isotropic poroelastic wave equation can be formulated to include the Biot and the squirt‐flow mechanisms to yield a new analytical solution in terms of the elements of the squirt‐flow tensor. The new model gives estimates of the vertical and the horizontal permeabilities, as well as other measurable rock and fluid properties. In particular, the model estimates phase velocity and attenuation of waves traveling at different angles of incidence with respect to the principal axis of anisotropy. The attenuation and dispersion of the fast quasi P‐wave and the quasi SV‐wave are related to the vertical and the horizontal permeabilities. Modeling suggests that the attenuation of both the quasi P‐wave and quasi SV‐wave depend on the direction of permeability. For frequencies from 500 to 4500 Hz, the quasi P‐wave attenuation will be of maximum permeability. To test the theory, interwell seismic waveforms, well logs, and hydraulic conductivity measurements (recorded in the fluvial Gypsy sandstone reservoir, Oklahoma) provide the material and fluid property parameters. For example, the analysis of petrophysical data suggests that the vertical permeability (1 md) is affected by the presence of mudstone and siltstone bodies, which are barriers to vertical fluid movement, and the horizontal permeability (1640 md) is controlled by cross‐bedded and planar‐laminated sandstones. The theoretical dispersion curves based on measurable rock and fluid properties, and the phase velocity curve obtained from seismic signatures, give the ingredients to evaluate the model. Theoretical predictions show the influence of the permeability anisotropy on the dispersion of seismic waves. These dispersion values derived from interwell seismic signatures are consistent with the theoretical model and with the direction of propagation of the seismic waves that travel parallel to the maximum permeability. This analysis with the new analytical solution is the first step toward a quantitative evaluation of the preferential directions of fluid flow in reservoir formation containing hydrocarbons. The results of the present work may lead to the development of algorithms to extract the permeability anisotropy from attenuation and dispersion data (derived from sonic logs and crosswell seismics) to map the fluid flow distribution in a reservoir.


2021 ◽  
Vol 114 (1) ◽  
Author(s):  
Alba Zappone ◽  
Eduard Kissling

AbstractThe Swiss Atlas of Physical Properties of Rocks (SAPHYR) project aims at centralize, uniform, and digitize dispersed and often hardly accessible laboratory data on physical properties of rocks from Switzerland and surrounding regions. The goal of SAPHYR is to make the quality-controlled and homogenized data digitally accessible to an open public, including industrial, engineering, land and resource planning companies as well as governmental and academic institutions, or simply common people interested in rock physics. The physical properties, derived from pre-existing literature or newly measured, are density, porosity and permeability as well as seismic, magnetic, thermal and electrical properties. The data were collected on samples either from outcrops or from tunnels and boreholes. At present, data from literature have been collected extensively for density, porosity, seismic and thermal properties. In the past years, effort has been placed especially on collecting samples and measuring the physical properties of rock types that were poorly documented in literature. A workflow for quality control on reliability and completeness of the data was established. We made the attempt to quantify the variability and the uncertainty of the data. The database has been recently transferred to the Federal Office of Topography swisstopo with the aim to develop the necessary tools to query the database and open it to the public. Laboratory measurements are continuously collected, therefore the database is ongoing and in continuous development. The spatial distribution of the physical properties can be visualized as maps using simple GIS tools. Here the distribution of bulk density and velocity at room conditions are presented as examples of data representation; the methodology to produce these maps is described in detail. Moreover we also present an exemplification of the use of specific datasets, for which pressure and temperatures derivatives are available, to develop crustal models.


Dialogue ◽  
2014 ◽  
Vol 53 (2) ◽  
pp. 203-228 ◽  
Author(s):  
PATRICK LEWTAS

This paper presents a metaphysical argument against physicalism based on the distinction between intrinsic and extrinsic properties. It argues that the physical, as physicalism must understand it, consists entirely of extrinsic properties, whereas consciousness involves at least some intrinsic properties. It concludes that consciousness has non-physical properties and that physicalism is false. The paper then defends its premises against current physicalist thinking. As much as possible, it offers metaphysical arguments about physical and conscious properties rather than epistemological arguments about our physical and phenomenal concepts.


2021 ◽  
Author(s):  
Yingxian Liu ◽  
Cunliang Chen ◽  
Hanqing Zhao ◽  
Yu Wang ◽  
Xiaodong Han

Abstract Fluid properties are key factors for predicting single well productivity, well test interpretation and oilfield recovery prediction, which directly affect the success of ODP program design. The most accurate and direct method of acquisition is underground sampling. However, not every well has samples due to technical reasons such as excessive well deviation or high cost during the exploration stage. Therefore, analogies or empirical formulas have to be adopted to carry out research in many cases. But a large number of oilfield developments have shown that the errors caused by these methods are very large. Therefore, how to quickly and accurately obtain fluid physical properties is of great significance. In recent years, with the development and improvement of artificial intelligence or machine learning algorithms, their applications in the oilfield have become more and more extensive. This paper proposed a method for predicting crude oil physical properties based on machine learning algorithms. This method uses PVT data from nearly 100 wells in Bohai Oilfield. 75% of the data is used for training and learning to obtain the prediction model, and the remaining 25% is used for testing. Practice shows that the prediction results of the machine learning algorithm are very close to the actual data, with a very small error. Finally, this method was used to apply the preliminary plan design of the BZ29 oilfield which is a new oilfield. Especially for the unsampled sand bodies, the fluid physical properties prediction was carried out. It also compares the influence of the analogy method on the scheme, which provides potential and risk analysis for scheme design. This method will be applied in more oil fields in the Bohai Sea in the future and has important promotion value.


2006 ◽  
Vol 129 (4) ◽  
pp. 423-428 ◽  
Author(s):  
John R. Lloyd ◽  
Miquel O. Hayesmichel ◽  
Clark J. Radcliffe

Magnetorheological (MR) fluids change their physical properties when subjected to a magnetic field. As this change occurs, the specific values of the physical properties are a function of the fluid’s time-varying organization state. This results in a nonlinear, hysteretic, time-varying fluid property response to direct magnetic field excitation. Permeability, resistivity and permittivity changes of MR fluid were investigated and their suitability to indicate the organizational state of the fluid, and thus other transport properties, was determined. High sensitivity of permittivity and resistivity to particle organization and applied field was studied experimentally. The measurable effect of these material properties can be used to implement an MR fluid state sensor.


Sign in / Sign up

Export Citation Format

Share Document