Boosting on Current Using Various Source Material for Dual Gate Tunnel Field Effect Transistor

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Priyadarshini N D ◽  
Nayana G H ◽  
P Vimala

Tunnel Field Effect Transistors (TFET) have demonstrated to have likely applications in the cutting-edge low force and super low force semiconductors to substitute the conventional FETs. TFET will be able to provide steep inverse subthreshold swing slope also maintaining a low leakage current, making it an essential structure for limiting the power consumption in Metal Oxide Semiconductor FETs.In this paper, we are simulating different structures of TFET by varying source material to boost the ON current of the device. The different models are designed and simulated using Silvaco TCAD simulator and transfer characteristics are studied.

2021 ◽  
Author(s):  
Garima Jain ◽  
Ravinder Singh Sawhney ◽  
Ravinder Kumar ◽  
Amit Saini

Abstract In this paper, a novel vertically stacked silicon Nanosheet Tunnel Field Effect Transistor (NS-TFET) device scaled to a gate length of 12nm with Contact poly pitch (CPP) of 48nm is simulated. NS-TFET device is investigated for its electrostatics characteristics using technology computer-aided design (TCAD) simulator. The inter-band tunneling mechanism with a P-I-N layout has been incorporated in the stacked nanosheet devices. The asymmetric design technique for doping has been used for optimum results. NS-TFET provides a low leakage current of order10-16 A, an excellent subthreshold swing (SW) of 23mv/decade, and negligible drain induced barrier lowering (DIBL) having a value of 10.5 mv/V. The notable ON to OFF current ratio of the order of 1011 has been achieved. The device exhibits a high transconductance of 3.022x10-5 S at the gate to source voltage of 1V. NS-TFET shows tremendous improvement in short channel effects (SCE) and is a good option for advanced technologies.


2020 ◽  
Vol 29 (11) ◽  
pp. 2050181
Author(s):  
Cross T. Asha Wise ◽  
G. R. Suresh ◽  
M. Palanivelen ◽  
S. Saraswathi

Mounting electronics circuits on a plastic flexible substrate are pertinent for biosensing applications due to their resilient nature, minimal processing conditions, lightweight and low cost. Organic Field-Effect Transistors (OFET)-based amplifier for flexible biosensors have been proposed in this paper. To design flexible biosensing circuits, Metal Oxide Semiconductor Field-Effect Transistor (MOSFET) with Polycyclic Hydrocarbon is a suitable choice. It is a big challenge to build an organic circuit using graphene electrode due to its poor performance of [Formula: see text]-type OFET, therefore it is advisable to use Pentacene as [Formula: see text]- and [Formula: see text]-type Organic semiconductors. Pentacene being one among the foremost totally investigated conjugated organic molecules with a high application potential because the hole mobility in OFETs goes up to 0.2[Formula: see text]cm2/(Vs), which exceeds that of amorphous silicon. In biosignal process, the first and most important step is to amplify the biosignal for further processing. Operational Transconductance Amplifier (OTA) plays an essential role in biological signal measuring instruments like EEG, ECG, EMG modules which measure the heart, muscle and brain activities. The OTA designed using this OFET is adaptable for flexible sensor circuits and also it derives the transconductance of 67 which is similar to silicon OTA. The amplifier designed here gives unit gain of 42[Formula: see text]dB with a frequency of 195[Formula: see text]Hz which is suitable for low-frequency biosignal processing applications.


Electronics ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 275 ◽  
Author(s):  
Faraz Najam ◽  
Yun Yu

The L-shaped tunneling field-effect-transistor (LTFET) has been recently introduced to overcome the thermal subthreshold limit of conventional metal-oxide-semiconductor field-effect-transistors (MOSFET). In this work, the shortcomings of the LTFET was investigated. It was found that the corner effect present in the LTFET effectively degrades its subthreshold slope. To avoid the corner effect, a new type of device with dual material gates is presented. The new device, termed the dual-gate (DG) LTEFT (DG-LTFET), avoids the corner effect and results in a significantly improved subthreshold slope of less than 10 mV/dec, and an improved ON/OFF current ratio over the LTFET. The DG-LTFET was evaluated for different device parameters and bench-marked against the LTFET. This work presents the optimum configuration of the DG-LTFET in terms of device dimensions and doping levels to determine the best subthreshold, ON current, and ambipolar performance.


Sign in / Sign up

Export Citation Format

Share Document