scholarly journals Is sulfur the responsible for color of yellow Chiapas Amber?

2021 ◽  
Vol 34 ◽  
Author(s):  
Geraldine Vázquez Bautista ◽  
M. Zapata Torres ◽  
F. Chalé-Lara ◽  
M. Meléndez Lira ◽  
E. Hernández Rodríguez ◽  
...  

Amber is a fossilized natural resin found in specific areas of the world; its geographical origin is associated to a characteristic color. Amber all over the world share basic characteristics due to a common polymeric matrix; however, its color is associated to the environment where it was formed. In this work, based on a compositional analysis, it is proposed that yellow color of Mexican amber is originated from the sulfur physical and chemical interaction within its polymeric matrix. The effect of sulfur present in yellow Mexican amber is studied by employing X-ray photoelectron and UV-Vis spectroscopies. Results show that sulfur is incorporated inside the polymer matrix with two different chemical environments; one related with sulfur-carbon bonds and the other with sulfur-sulfur bonds. The optical transmission spectrum simulated considering amber as a composite material reproduce the scattering contribution observed experimentally.

Author(s):  
C. Goessens ◽  
D. Schryvers ◽  
J. Van Landuyt ◽  
A. Verbeeck ◽  
R. De Keyzer

Silver halide grains (AgX, X=Cl,Br,I) are commonly recognized as important entities in photographic applications. Depending on the preparation specifications one can grow cubic, octahedral, tabular a.o. morphologies, each with its own physical and chemical characteristics. In the present study crystallographic defects introduced by the mixing of 5-20% iodide in a growing AgBr tabular grain are investigated. X-ray diffractometry reveals the existence of a homogeneous Ag(Br1-xIx) region, expected to be formed around the AgBr kernel. In fig. 1 a two-beam BF image, taken at T≈100 K to diminish radiation damage, of a triangular tabular grain is presented, clearly showing defect contrast fringes along four of the six directions; the remaining two sides show similar contrast under relevant diffraction conditions. The width of the central defect free region corresponds with the pure AgBr kernel grown before the mixing with I. The thickness of a given grain lies between 0.15 and 0.3 μm: as indicated in fig. 2 triangular (resp. hexagonal) grains exhibit an uneven (resp. even) number of twin interfaces (i.e., between + and - twin variants) parallel with the (111) surfaces. The thickness of the grains and the existence of the twin variants was confirmed from CTEM images of perpendicular cuts.


Author(s):  
John B. Vander Sande ◽  
Thomas F. Kelly ◽  
Douglas Imeson

In the scanning transmission electron microscope (STEM) a fine probe of electrons is scanned across the thin specimen, or the probe is stationarily placed on a volume of interest, and various products of the electron-specimen interaction are then collected and used for image formation or microanalysis. The microanalysis modes usually employed in STEM include, but are not restricted to, energy dispersive X-ray analysis, electron energy loss spectroscopy, and microdiffraction.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 218
Author(s):  
Carlos Alberto Ríos-Reyes ◽  
German Alfonso Reyes-Mendoza ◽  
José Antonio Henao-Martínez ◽  
Craig Williams ◽  
Alan Dyer

This study reports for the first time the geologic occurrence of natural zeolite A and associated minerals in mudstones from the Cretaceous Paja Formation in the urban area of the municipality of Vélez (Santander), Colombia. These rocks are mainly composed of quartz, muscovite, pyrophyllite, kaolinite and chlorite group minerals, framboidal and cubic pyrite, as well as marcasite, with minor feldspar, sulphates, and phosphates. Total organic carbon (TOC), total sulfur (TS), and millimeter fragments of algae are high, whereas few centimeters and not biodiverse small ammonite fossils, and other allochemical components are subordinated. Na–A zeolite and associated mineral phases as sodalite occur just beside the interparticle micropores (honeycomb from framboidal, cube molds, and amorphous cavities). It is facilitated by petrophysical properties alterations, due to processes of high diagenesis, temperatures up to 80–100 °C, with weathering contributions, which increase the porosity and permeability, as well as the transmissivity (fluid flow), allowing the geochemistry remobilization and/or recrystallization of pre-existing silica, muscovite, kaolinite minerals group, salts, carbonates, oxides and peroxides. X-ray diffraction analyses reveal the mineral composition of the mudstones and scanning electron micrographs show the typical cubic morphology of Na–A zeolite of approximately 0.45 mμ in particle size. Our data show that the sequence of the transformation of phases is: Poorly crystalline aluminosilicate → sodalite → Na–A zeolite. A literature review shows that this is an unusual example of the occurrence of natural zeolites in sedimentary marine rocks recognized around the world.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Hiroyuki Yamane ◽  
Masaki Oura ◽  
Osamu Takahashi ◽  
Tomoko Ishihara ◽  
Noriko Yamazaki ◽  
...  

AbstractAdhesion is an interfacial phenomenon that is critical for assembling carbon structural composites for next-generation aircraft and automobiles. However, there is limited understanding of adhesion on the molecular level because of the difficulty in revealing the individual bonding factors. Here, using soft X-ray spectromicroscopy we show the physical and chemical states of an adhesive interface composed of a thermosetting polymer of 4,4’-diaminodiphenylsulfone-cured bisphenol A diglycidyl ether adhered to a thermoplastic polymer of plasma-treated polyetheretherketone. We observe multiscale phenomena in the adhesion mechanisms, including sub-mm complex interface structure, sub-μm distribution of the functional groups, and molecular-level covalent-bond formation. These results provide a benchmark for further research to examine how physical and chemical states correlate with adhesion, and demonstrate that soft X-ray imaging is a promising approach for visualizing the physical and chemical states at adhesive interfaces from the sub-mm level to the molecular level.


1970 ◽  
Vol 37 (290) ◽  
pp. 705-707 ◽  
Author(s):  
L. C. Hodge

SummaryRussellite Bi2O3. WO3 occurs in a small pegmatite near Poona, Western Australia. The fine-grained yellow to pale green material is an inseparable mixture of russellite, bismite, koechlinite, and bismutite. X-ray powder diffraction, physical, and chemical data agree in general with the original description of the mineral from Cornwall, England. The original analyses made on micro quantities are now supplemented by analyses on macro quantities.


1987 ◽  
Vol 113 ◽  
Author(s):  
Scott Schlorholtz ◽  
Ken Bergeson ◽  
Turgut Demirel

ABSTRACTThe physical and chemical properties of fly ash produced at Ottumwa Generating Station have been monitored since April, 1985. The fly ash is produced from burning a low sulfur, sub-bituminous coal obtained from the Powder River Basin near Gillette, Wyoming. One-hundred and sixty samples of fly ash were obtained during the two year period. All of the samples were subjected to physical testing as specified by ASTM C 311. About one-hundred of the samples were also subjected to a series of tests designed to monitor the self-cementing properties of the fly ash. Many of the fly ash samples were subjected to x-ray diffraction and fluorescence analysis to define the mineralogical and chemical composition of the bulk fly ash as a function of sampling date. Hydration products in selected hardened fly ash pastes, were studied by x-ray diffraction and scanning electron microscopy. The studies indicated that power plant operating conditions influenced the compressive strength of the fly ash paste specimens. Mineralogical and morphological studies of the fly ash pastes indicated that stratlingite formation occurred in the highstrength specimens, while ettringite was the major hydration product evident in the low-strength specimens.


2012 ◽  
Vol 554-556 ◽  
pp. 2112-2115
Author(s):  
Hui Li ◽  
Xuan Wang ◽  
Yong Zhu ◽  
Qin Ren

Amber and copal belong to the natural resin, which are similar and transitional in the physical and chemical properties. The artificial heat-pressurized treatment is contributed to the polymerization of the natural copal, and turns into green, yellow-green and deep orange-yellow copal. It is very difficult to identify amber from the heat- pressurized treatment copal only based on the gemological parameters.The thermal behavior of amber and the copal before and after heat-pressurized treatment were analyzed by means of differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy(FTIR) and nuclear magnetic resonance(NMR). The results show that amber exists an evident endothermic peak around 123~132°C, and copal reveals an obvious endothermic peak at about 174~178°C, and the heat pressurized treatment copal occurs a clear exothermic peak around 150~152°C. The differences between endothermic or exothermic transition and peak position reveal occurring thermal oxidation or the bond breaking or the melting, which are of great significance in the identification.


2012 ◽  
Vol 730-732 ◽  
pp. 569-574
Author(s):  
Marta Cabral ◽  
Fernanda Margarido ◽  
Carlos A. Nogueira

Spent Ni-MH batteries are not considered too dangerous for the environment, but they have a considerable economical value due to the chemical composition of electrodes which are highly concentrated in metals. The present work aimed at the physical and chemical characterisation of spent cylindrical and thin prismatic Ni-MH batteries, contributing for a better definition of the recycling process of these spent products. The electrode materials correspond to more than 50% of the batteries weight and contain essentially nickel and rare earths (RE), and other secondary elements (Co, Mn, Al). The remaining components are the steel parts from the external case and supporting grids (near 30%) containing Fe and Ni, and the plastic components (<10%). Elemental quantitative analysis showed that the electrodes are highly concentrated in metals. Phase identification by X-ray powder diffraction combined with chemical analysis and leaching experiments allowed advancing the electrode materials composition. The cathode is essentially constituted by 6% metallic Ni, 66% Ni(OH)2, 4.3% Co(OH)2 and the anode consists mainly in 62% RENi5 and 17% of substitutes and/or additives such as Co, Mn and Al.


2003 ◽  
Vol 807 ◽  
Author(s):  
T. Advocat ◽  
F. Jorion ◽  
T. Marcillat ◽  
G. Leturcq ◽  
X. Deschanels ◽  
...  

ABSTRACTZirconolite is a potential inorganic matrix that is currently investigated in France, in the framework of the 1991 radioactive waste management law, with a view to provide durable containment of the trivalent and tetravalent minor actinides like neptunium, curium, americium and small quantities of unrecyclable plutonium separated from other nuclear waste. To confirm the actinide loading capacity of the zirconolite calcium site and to study the physical and chemical stability of this type of ceramic when subjected to alpha self-irradiation, zirconolite ceramic pellets were fabricated with 10 wt% plutonium oxide (isotope 239 or 238). The 55 pellets are dense (> 93.3% of the theoretical density on average) and free of cracks. They are characterized by a grain size of between 10 and 20 micrometers. X-ray diffraction analyses confirmed the presence of the zirconolite 2M crystalline structure.


2014 ◽  
Vol 976 ◽  
pp. 52-58 ◽  
Author(s):  
Janeth Sarmiento Arellano ◽  
Enrique Rosendo ◽  
Román Romano ◽  
Gabriela Nieto ◽  
Tomás Díaz ◽  
...  

A comparative study of the synthesis of cadmium selenide (CdSe) nanoparticles (NPs) using different cadmium precursors such as, cadmium nitrate (Cd (NO3)2·4H2O), cadmium acetate ((CH3COO)2Cd·2H2O) and cadmium chloride (CdCl2·2.5H2O) is presented in this work. The method used to obtain the CdSe NPs was the colloidal synthesis at low temperature and atmospheric pressure. The Cd2+ ions were obtained in aqueous solution at room temperature, the surfactant used in the process was an aqueous solution of sodium hydroxide (NaOH), penta-sodium tripolyphosphate and H2O named commonly extran, which not only helps to stabilize the NPs, but also allows adjusting the pH of the solution. Se2- ions were obtained with sodium borohydride (NaBH4) as reductant at 75 oC. The by-products from the reaction were eliminated through a cleaning process with hydrochloric acid (HCl). Molar concentration of Cd:Se was varied from 3:1 to 1:3 and the pH value was varied between 8 and 11. The obtained samples were characterized by X-ray diffraction (XRD), it was seen that the obtained NPs present cubic centered face structure. The crystallite size from the powder was calculated using the Debye-Scherrer equation and was found between 3.3 nm and 5.6 nm, the variation in size depends on the molar concentration of cadmium and selenium. Morphological study was done using scanning electron microscopy (SEM) and compositional analysis was done by energy dispersive x-ray analysis (EDAX).


Sign in / Sign up

Export Citation Format

Share Document