scholarly journals PERFORMANCE TEST OF DIFFERENT TYPES OF WASTE AS PARTIAL REPLACEMENT OF CEMENT IN HOT ASPHALT MIX

One of the major fillers used in HMA is cement. With the extensive use of cement in mortars/concrete, there have been some environmental concerns in terms of damage caused by the extraction of raw material and Carbon dioxide (CO2) emission during cement manufacture. This has brought pressures to reduce the cement consumption in the industry. This journal outlines the ongoing research on different waste materials partial replacement of cement as filler used in hot mix asphalt mixes. Many studies regarding their effects on bituminous mixes were also analysed in combination with cement filler mastic. This project summarizes the interaction of Waste materials partial replacement of cement with different percentages 0%, 25%, 50%, 75%, 100% and finding out the optimun percenetage of waste material i.e: GGBS, Flyash, Concrete dust, Metakaolin and Marble powder as partial replacment of cement in bituminous mixes. Marshall properties such as stability, flow value, unit weight, air voids, are used to determine optimum waste material content for the used grade of bitumen (100/120).

2021 ◽  
Vol 1200 (1) ◽  
pp. 012008
Author(s):  
K Supar ◽  
F A A Rani ◽  
N L Mazlan ◽  
M K Musa

Abstract The use of waste material as a partial replacement has become popular in concrete mixture studies. Many research has utilized waste materials like cement, fine aggregate, coarse aggregate, and reinforcing materials substitute. The current paper focuses on some of the waste elements that are utilized in a concrete mortar (use in roof tile) as a partial replacement for fine aggregates such as rubber ash, sawdust, seashells, crumb rubber, pistachio shells, cinder sand, stone dust, and copper slag. There are many variations of mix proportion and water-cement ratio for every waste material. Compressive strength was compared and found that stone dust and the combination of seashell and coconut fiber shows an incensement when used to replacing fine aggregate. The suitable replacement level for stone dust is 25% and 50%. While the suitable replacement levels for the combination of sea shell and coconut fiber are 20% and 30%. Material from the rubber families such as rubber crumb and rubber ash is only suitable for replacement levels. Rubber families especially rubber crumbs have shown low water absorption value which is good in the production of roofing products. As we know, the roof should have waterproof properties to prevent any leaks from happening when it rains. Most of the waste materials added as fine aggregates in concrete have increased the amount of water absorption and found that sawdust is the most abundant material with a high percentage of water absorption compared to the others. Research on the partial replacement of fine aggregates replaced with waste materials is needed more extensively to provide more confidence about their use in concrete mortars, especially on roof tiles.


Author(s):  
Anand G ◽  
Tharunkumar N

Concrete ingredients is different material like binding material (cement+ fly ash), fine aggregate, coarse aggregate and water. Today construction cost is very high with using conventional materials due to unavailability of natural materials. This problem can be solved by total replacement of concrete with different material which is not convenient in terms of required properties. Due to this limitation of unavailability of material which plays the vital role of concrete we have only choice of partial replacement of concrete ingredients by waste materials. Overv4.2 billion tons of cement was consumed globally in 2018 based on survey of world coal association and also cement production emits CO2 in to the atmosphere which is harmful to the nature. If we can partially replace the cement with the material with desirable properties then we can save natural material and reduce emission of CO2 in to the atmosphere. This industrial waste dumping to the nearest site which spoils the land and atmosphere as well as it also affects aesthetics of urban environment so use of this waste material in concrete is cost effective as well as environment friendly way to disposal of waste. The primary objective of this study is to select the waste material which gives desirable properties with concrete. This study includes previous investigation done on the mechanical and chemical properties of concrete produced using partial replacement of cement by waste materials.


2016 ◽  
Vol 74 (1) ◽  
pp. 212-219 ◽  
Author(s):  
Wen-quan Li ◽  
Wei Liu ◽  
Hai-hua Cao ◽  
Jing-cheng Xu ◽  
Jia Liu ◽  
...  

The treatment and disposal of sewage sludge is a growing problem for sewage treatment plants. One method of disposal is to use sewage sludge as partial replacement for raw material in cement manufacture. Although this process has been well researched, little attention has been given to the thermal properties of cement that has had sewage sludge incorporated in the manufacturing process. This study investigated the fire endurance of eco-cement to which lime-dried sludge (LDS) had been added. LDS was added in proportions of 0%, 3%, 6%, 9%, and 12% (by weight) to the raw material. The eco-cement was exposed to 200, 400, or 600 °C for 3 h. The residual strength and the microstructural properties of eco-cement were then studied. Results showed that the eco-cement samples suffered less damage than conventional cement at 600 °C. The microstructural studies showed that LDS incorporation could reduce Ca(OH)2 content. It was concluded that LDS has the potential to improve the heat resistance of eco-cement products.


2018 ◽  
Vol 7 (2) ◽  
pp. 63 ◽  
Author(s):  
Bassam A. Tayeh

Waste materials, such as glass, marble, and timber, are pressing environmental problems worldwide, and their environmental impact can be best overcome by reusing them. This research mainly aims to determine the impact of using waste materials, such as crushed glass, crushed marble, and burned wood in powder form, as partial replacements for cement on the compressive strength of concrete. Mechanical properties (e.g., compressive strength) and physical properties (e.g., workability and unit weight) were investigated. The powdered waste materials (after passing through sieve #200) were partially replaced with cement by ratios of 10%, 20%, and 30%. Compressive strength was tested on the 7th, 28th, and 56th days. Results showed that workability decreased as the partial replacement level of glass powder, marble powder, and timber ash increased. The results also showed a decrease in the compressive strength of concrete when the replacement level was increased from 10% to 30% for each waste material.


2021 ◽  
Vol 2089 (1) ◽  
pp. 012061
Author(s):  
S Sagar ◽  
M.M Darshan ◽  
M Roja ◽  
UP Kalappa

Abstract In design of concrete structures, concrete plays an important role in the contemporary background as raw material for construction has been decreased. Therefore construction industry has acquaint with novel methods by making use of the available waste material for partial replacement by using alternative aggregates instead of ordinary aggregates. In this study, pumice stone is used as replacement materials for concrete where it is found in the abyssal of the red clay or in deepest portion of the ocean, and partially replacing by Pumice, blends with cement. The physical, mechanical and durability properties of concrete was investigated by conduction compressive strength and tensile strength on the ordinary and replaced concrete with varied percentage of pumice from 5% to 30%. It’s obsereved that environmental and economical benefits can be achieved if waste materials can be used to replace the coarse aggregate in order to use the waste materials effectively in areas with abundant availability of materials. This thesis work on the effectiveness of partial substitutions of pumice for coarse aggregate in producing adequate strength gain. In the present thesis work comparison of fresh concrete and hardened properties of concrete for both conventional concrete and Replaced concrete for varying percentage of replacement of pumice stone to coarse aggregate and based on the experimental results, it’s concluded that 25% partial replacement by pumice gives maximum compresive strength.


Minerals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 819
Author(s):  
Pura Alfonso ◽  
Oriol Tomasa ◽  
Luis Miguel Domenech ◽  
Maite Garcia-Valles ◽  
Salvador Martinez ◽  
...  

Tailings from the Osor fluorite mines release large amounts of potentially toxic elements into the environment. This work is a proposal to remove these waste materials and use them as a raw material in the manufacture of glass. The chemical composition of the tailings was determined by X-ray fluorescence and the mineralogy by X-ray diffraction. Waste materials have SiO2, Al2O3 and CaO contents suitable for a glass production, but Na as NaCO3 has to be added. Two glass formulations, with 80–90% of the residue and 10–20% Na2CO3, have been produced. The crystallization temperatures, obtained by differential thermal analysis, were 875 and 901 °C, and the melting temperatures were 1220 and 1215 °C for the G80-20 and G90-10 glasses, respectively. The transition temperatures of glass were 637 and 628 °C. The crystalline phases formed in the thermal treatment to produce devitrification were nepheline, plagioclase and diopside in the G80-20 glass, and plagioclase and akermanite-gehlenite in the G90-10 glass. The temperatures for the fixed viscosity points, the working temperatures and the coefficient of expansion were obtained. The chemical stability of the glass was tested and results indicate that the potentially toxic elements of the tailings were incorporated into the glass structure.


Cerâmica ◽  
2013 ◽  
Vol 59 (351) ◽  
pp. 473-480 ◽  
Author(s):  
K. C. P. Faria ◽  
J. N. F. Holanda

The sugarcane industry generates huge amounts of sugarcane bagasse ashes (SCBA). This work investigates the incorporation of a SCBA waste as an alternative raw material into a clay body, replacing natural clay material by up to 20 wt.%. Clay ceramic pieces were produced by uniaxial pressing and fired at temperatures varying from 700 to 1100 ºC. The technological properties of the clay ceramic pieces (linear shrinkage, apparent density, water absorption, and tensile strength) as function of the firing temperature and waste addition are investigated. The phase evolution during firing was followed by X-ray diffraction. The results showed that the SCBA waste could be incorporated into red ceramics (bricks and roofing tiles) in partial replacement for natural clay material. These results confirm the feasibility of valorisation of SCBA waste to produce red ceramic. This use of SCBA can also contribute greatly to reducing the environmental problems of the sugarcane industry, and also save the sources of natural raw materials used in the ceramic industry.


2020 ◽  
Vol 10 (3) ◽  
pp. 5728-5731 ◽  
Author(s):  
S. A. Chandio ◽  
B. A. Memon ◽  
M. Oad ◽  
F. A. Chandio ◽  
M. U. Memon

This research paper aims at investigating the effects of fly ash as cement replacement in green concrete made with partial replacement of conventional coarse aggregates with coarse aggregates from demolishing waste. Green concrete developed with waste materials is an active area of research as it helps in reducing the waste management issues and protecting the environment. Six concrete mixes were prepared using 1:2:4 ratio and demolishing waste was used in equal proportion with conventional aggregates, whereas fly ash was used from 0%-10% with an increment of 2.5%. The water-cement ratio used was equal to 0.5. Out of these mixes, one mix was prepared with all conventional aggregates and was used as the control, and one mix with 0% fly ash had only conventional and recycled aggregates. The slump test of all mixes was determined. A total of 18 cylinders of standard size were prepared and cured for 28 days. After curing the compressive strength of the specimens was evaluated under gradually increasing load until failure. It is observed that 5% replacement of cement with fly ash and 50% recycled aggregates gives better results. With this level of dosage of two waste materials, the reduction in compressive strength is about 11%.


Author(s):  
Gbadamosi Aderemi Tobi ◽  
Ogunsuyi Raphael Abidemi ◽  
Ojo Meshach Felix

With the rapid economic growth and continuously increased consumption, a large amount of glass waste materials is generated; this study investigated the effect of crushed waste glass as filler and also as an aggregate in the asphalt binder course. It compares the glassphalt mix with the specification range at different percentages to meet specifications limit according to Nigeria roads and bridges reverse book of 1997 Waste glass are cleaned and crushed from the glass bottles and added to the asphalt as a filler and as a replacement for coarse aggregates, the marshal method is used to determine the optimum bitumen content and evaluate the properties of the asphalt mix. However, 24 samples were prepared in total, 12 samples each for the asphalt mix used to determine the optimum bitumen content and the other 12 samples for the glassphalt mix used to find out the effect of adding the different percentages of crushed waste glass to the asphalt mixture. The Marshall test carried out on the asphalt mixtures showed that the optimum bitumen content of bitumen was found out to be 6.2% of the asphalt mix by weight. Also, Marshall Test carried out on the glassphalt mix showed the optimum percentage of glass used in the binder course of the weights of aggregates in the asphalt mix. The result of this experiment is been checked to be consistent with the Nigeria road and bridges reverse book of 1997, i.e. Marshall Stability, flow, bulk density, and air voids.


2015 ◽  
Vol 9 (1) ◽  
pp. 17-22 ◽  
Author(s):  
Myrian Schettino ◽  
José Holanda

Large amounts of waste materials are discarded in the sugarcane industry. This work investigates the reuse of sugarcane bagasse ash waste as an alternative raw material for porcelain stoneware tile bodies, replacing natural quartz by up to 5 wt.%. The tile pieces were fired at 1230 ?C using a fast-firing cycle (< 60min). The technological properties of the fired tile pieces (e.g., linear shrinkage, water absorption, apparent density, and flexural strength) were determined. The sintering process was followed by SEM and XRD analyses. The results show that up to 2.5 wt.% sugarcane bagasse ash waste can be used as a partial replacement for quartz in porcelain stoneware tile (group BIa, ISO 13006 standard), providing excellent technical properties. Hence, its application in high-quality ceramic tile for use in civil construction as a low-cost, alternative raw material could be an ideal means of managing sugarcane bagasse ash waste.


Sign in / Sign up

Export Citation Format

Share Document