scholarly journals Male Infertility: Pathogenetic Significance of Oxidative Stress and Antioxidant Defence (Review)

2021 ◽  
Vol 24 (6) ◽  
pp. 107-116
Author(s):  
Vsevolod Koshevoy ◽  
Svitlana Naumenko ◽  
Pavlo Skliarov ◽  
Serhiy Fedorenko ◽  
Lidia Kostyshyn

The basis of the pathogenesis of male infertility is the processes of peroxide oxidation of biological substrates, especially lipids and proteins. By destroying the sperm membrane, toxic peroxidation products reduce its motility and ability to fertilize the egg, which is determined by a decrease in the number of motile sperm in the ejaculate. These changes lead to complete or partial male infertility. The authors of the review found that is accompanied by a damaging effect on the structural and functional activity of the gonads and is manifested, in particular, by an imbalance in the hormonal background of the male body. Similar effects are characteristic of an increase in the content of reactive Nitrogen species and its metabolites, which cause nitrosative stress, which is also the cause of male hypofertility and is inseparable from the state of oxidative stress. In scientific work it is determined that the accumulation of harmful peroxidation products leads to damage and destruction of sperm DNA, reduced activity of acrosomal enzymes and mitochondrial potential of sperm, reduced overall antioxidant activity. This makes it impossible for an adequate response of the body. Multi component antioxidant defense system resists stress. It is represented by enzymatic and non-enzymatic links, which can neutralize harmful radicals and peroxidation products. It contributes to the full manifestation of reproductive function. The presence of powerful antioxidant properties of catalase, superoxide dismutase, and enzymes of the thiol-disulfide system, which form the enzymatic system of antioxidant protection, as well as selenium, zinc, copper, other trace elements, retinol, tocopherol, ascorbic acid, and vitamins as parts of the non-enzymatic system is shown. The efficiency of registration is substantiated thin biochemical shift detectors or complex methods, such as total antioxidant status of sperm or sperm plasma, mitochondrial membrane potential, etc along with simple markers of oxidative stress, such as diene conjugates, malonic dialdehyde, and metabolites of the Nitrogen Oxide cycle. Given the leading role of oxidative stress in the development of male hypofertility, the prospect of further research is the search for modern means for correction, especially among substances with pronounced redox activity

2021 ◽  
Author(s):  
Małgorzata Olszowy-Tomczyk

AbstractOxidative stress, associated with an imbalance between the oxidants (reactive oxygen species) and the antioxidants in the body, contributes to the development of many diseases. The body’s fight against reactive oxygen species is supported by antioxidants. Nowadays, there are too many analytical methods, but there is no one universal technique for assessing antioxidant properties. Moreover, the applied different ways of expressing the results lead to their incompatibility and unreasonable interpretation. The paper is a literature review concerning the most frequent ways of antioxidant activities expression and for an easy and universal method of the obtained results discussion. This paper is an attempt to point out their disadvantages and advantages. The manuscript can support the searching interpretation of the obtained results which will be a good tool for the development of a number of fields, especially medicine what can help in the future detection and treatment of many serious diseases. Graphic abstract


Biology ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 287
Author(s):  
Yew Rong Kong ◽  
Yong Xin Jong ◽  
Manisha Balakrishnan ◽  
Zhui Ken Bok ◽  
Janice Kwan Kah Weng ◽  
...  

Oxidative stress is a result of disruption in the balance between antioxidants and pro-oxidants in which subsequently impacting on redox signaling, causing cell and tissue damages. It leads to a range of medical conditions including inflammation, skin aging, impaired wound healing, chronic diseases and cancers but these conditions can be managed properly with the aid of antioxidants. This review features various studies to provide an overview on how Carica papaya help counteract oxidative stress via various mechanisms of action closely related to its antioxidant properties and eventually improving the management of various oxidative stress-related health conditions. Carica papaya is a topical plant species discovered to contain high amounts of natural antioxidants that can usually be found in their leaves, fruits and seeds. It contains various chemical compounds demonstrate significant antioxidant properties including caffeic acid, myricetin, rutin, quercetin, α-tocopherol, papain, benzyl isothiocyanate (BiTC), and kaempferol. Therefore, it can counteract pro-oxidants via a number of signaling pathways that either promote the expression of antioxidant enzymes or reduce ROS production. These signaling pathways activate the antioxidant defense mechanisms that protect the body against both intrinsic and extrinsic oxidative stress. To conclude, Carica papaya can be incorporated into medications or supplements to help manage the health conditions driven by oxidative stress and further studies are needed to investigate the potential of its chemical components to manage various chronic diseases.


2020 ◽  
pp. 43-49
Author(s):  
A. A. Khisamova ◽  
O. A. Gizinger

Increased physical exertion is a catalyst for oxidative stress and the production of reactive oxygen species, which entails irreversible processes in the body, leading to chronic diseases and disability. This article contains a literature review of studies that prove the effect of the antioxidant properties of Curcuma longa on cells under oxidative stress. To search for data, a wide range of literature and databases was explored: Pubmed, Google.Scholar, and Embase.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Paulina Górska ◽  
Ilona Górna ◽  
Juliusz Przysławski

Purpose This study aims to analyze the antioxidant properties of the Mediterranean diet and describe methods that are used in clinical studies to assess its role in reducing oxidative stress. Design/methodology/approach The review presents the results of interventional and observational clinical trials aimed at assessing the influence of the Mediterranean diet on the level of enzymatic and non-enzymatic antioxidants, as well as the total blood antioxidant capacity. Findings The Mediterranean diet as a varied diet can be a better way to provide antioxidants to the body than supplements. Individual compounds administered in an isolated form can give the opposite effect to the expected, stimulating oxidative stress. The administration of antioxidants in the form of supplements instead of a varied diet is also associated with a lack of synergism of action. In studies on the importance of the Mediterranean diet in the reduction of oxidative stress, single markers are used to measure oxidative damage, the activity of enzymatic antioxidants and the concentration of individual non-enzymatic antioxidants. At the same time, the need to find markers that would assess the level of oxidative stress and the body’s antioxidant capacity more comprehensively is emphasized. Practical implications It should be taken into account that differences between in vivo and in vitro results may result from the fact of various factors, including genetic, smoking, intestinal microflora or diet composition. It is also necessary to answer the question about which marker or set of markers could in the most comprehensive way to assess the level of oxidative stress and the body’s antioxidant capacity. Originality/value The literature review shows not only the source of antioxidants in the Mediterranean diet. This paper also presents a critical approach to markers that allow the assessment of the antioxidant properties of the diet.


2020 ◽  
Vol 1 (1) ◽  
pp. 67-81
Author(s):  
Shen Chuen Khaw ◽  
Zhen Zhe Wong ◽  
Richard Anderson ◽  
Sarah Martins da Silva

Fifteen percent of couples are globally estimated to be infertile, with up to half of these cases attributed to male infertility. Reactive oxidative species (ROS) are known to damage sperm leading to impaired quantity and quality. Although not routinely assessed, oxidative stress is a common underlying pathology in infertile men. Antioxidants have been shown to improve semen analysis parameters by reducing ROS and facilitating repair of damage caused by oxidative stress, but it remains unclear whether they improve fertility. Carnitines are naturally occurring antioxidants in mammals and are normally abundant in the epididymal luminal fluid of men. We conducted a systematic review and meta-analysis to evaluate the safety and efficacy of carnitine supplementation for idiopathic male infertility. We searched ClinicalKey, ClinicalTrials.gov, Cochrane Central Register of Controlled Trials (CENTRAL), EMBASE, MEDLINE, PubMed and ScienceDirect for relevant studies published from 1 January 2000 to 30 April 2020. Of the articles retrieved, only eight randomised controlled trials were identified and included. Analysis showed that carnitines significantly improve total sperm motility, progressive sperm motility and sperm morphology, but without effect on sperm concentration. There was no demonstrable effect on clinical pregnancy rate in the five studies that included that outcome, although patient numbers were limited. Therefore, the use of carnitines in male infertility appears to improve some sperm parameters but without evidence of an increase in the chance of natural conception. Lay summary Although male infertility affects 1:15 men, there is no obvious reason in the vast majority of cases. Reactive oxidative species (ROS) are highly active molecules containing oxygen and are natural byproducts of normal metabolism. However, high concentrations of ROS have been shown to damage sperm, which negatively impacts a couple’s ability to conceive. Carnitines are natural antioxidants found in the body that counterbalance the damaging effects of ROS. We conducted a comprehensive review of published studies to assess whether carnitine supplements are safe and effective in improving sperm quality and pregnancy rates. Our analysis shows that carnitines improve sperm swimming and production of normal-shaped sperm cells but do not affect sperm count or pregnancy rates, although there are only a few studies and scientific evidence is limited. Whilst it is possible that carnitines may benefit male infertility, more evidence is required regarding chances of pregnancy after carnitine therapy.


Author(s):  
Evgeny Morkovin ◽  
Dmitry Bakulin ◽  
Liliya Knyshova ◽  
Anatoly Yakovlev ◽  
Denis Kurkin ◽  
...  

Пероральное введение ацетилцистеина препятствовало развитию признаков окислительного стресса у животных подвергнутых алкогольной интоксикации. Это подтверждает антиоксидантные свойства ацетилцистеина и способность предотвращать развитие токсических процессов в печени на фоне алкогольной интоксикации организма, что является основанием для его более широкого применения в клинической практике.Acetylcysteine (NAC) is a precursor to glutathione. Oral administration of NAC prevented the development of signs of oxidative stress in animals subjected to alcohol intoxication, which confirms the antioxidant properties of NAC and the ability to prevent the development of toxic processes in the liver against the background of alcohol intoxication of the body, which is the basis for its wider use in clinical practice.


2019 ◽  
Vol 20 (20) ◽  
pp. 5183 ◽  
Author(s):  
Chang-Youh Tsai ◽  
Song-Chou Hsieh ◽  
Cheng-Shiun Lu ◽  
Tsai-Hung Wu ◽  
Hsien-Tzung Liao ◽  
...  

Systemic lupus erythematosus (SLE) is a prototype of systemic autoimmune disease involving almost every organ. Polygenic predisposition and complicated epigenetic regulations are the upstream factors to elicit its development. Mitochondrial dysfunction-provoked oxidative stress may also play a crucial role in it. Classical epigenetic regulations of gene expression may include DNA methylation/acetylation and histone modification. Recent investigations have revealed that intracellular and extracellular (exosomal) noncoding RNAs (ncRNAs), including microRNAs (miRs), and long noncoding RNAs (lncRNAs), are the key molecules for post-transcriptional regulation of messenger (m)RNA expression. Oxidative and nitrosative stresses originating from mitochondrial dysfunctions could become the pathological biosignatures for increased cell apoptosis/necrosis, nonhyperglycemic metabolic syndrome, multiple neoantigen formation, and immune dysregulation in patients with SLE. Recently, many authors noted that the cross-talk between oxidative stress and ncRNAs can trigger and perpetuate autoimmune reactions in patients with SLE. Intracellular interactions between miR and lncRNAs as well as extracellular exosomal ncRNA communication to and fro between remote cells/tissues via plasma or other body fluids also occur in the body. The urinary exosomal ncRNAs can now represent biosignatures for lupus nephritis. Herein, we’ll briefly review and discuss the cross-talk between excessive oxidative/nitrosative stress induced by mitochondrial dysfunction in tissues/cells and ncRNAs, as well as the prospect of antioxidant therapy in patients with SLE.


2014 ◽  
Vol 111 (11) ◽  
pp. 1985-1991 ◽  
Author(s):  
Marziyeh Ashoori ◽  
Ahmad Saedisomeolia

Oxidative stress is involved in the development of many chronic diseases. One of the main factors involved in oxidative stress reduction is increased antioxidant potential. Some nutrients such as vitamin C, vitamin E and carotenoids are known to act as antioxidants; however, riboflavin is one of the neglected antioxidant nutrients that may have an antioxidant action independently or as a component of the glutathione redox cycle. Herein, studies that have examined the antioxidant properties of riboflavin and its effect on oxidative stress reduction are reviewed. The results of the reviewed studies confirm the antioxidant nature of riboflavin and indicate that this vitamin can protect the body against oxidative stress, especially lipid peroxidation and reperfusion oxidative injury. The mechanisms by which riboflavin protects the body against oxidative stress may be attributed to the glutathione redox cycle and also to other possible mechanisms such as the conversion of reduced riboflavin to the oxidised form.


2021 ◽  
Vol 12 ◽  
Author(s):  
Fangfang Zhao ◽  
Shen Yan ◽  
Mengliang Tian

Weaning causes the generation of excessive reactive oxygen species in the body, which could lead to oxidative stress. Polyphenols, for which blueberries are an important dietary source, are known for various health benefits including antioxidant properties. Here, we sought to elucidate the effects of blueberry polyphenol extracts (BPE) on intestinal antioxidant capacity and possible underlying mechanisms in weaned rats. Ninety-six rats were assigned to two groups and fed either a standard diet or a standard diet supplemented with BPE (200 mg/kg). The results showed that BPE supplementation increased (P < 0.05) catalase and superoxide dismutase activities and decreased (P < 0.05) interleukin-1 and interferon-γ contents in the jejunum and ileum. The abundances of mammalian target of rapamycin, ribosomal p70 S6 kinase and eukaryotic initiation factor 4E-binding protein 1 mRNA were elevated in the jejunum and ileum (P < 0.05) after BPE supplementation. Additionally, BPE supplementation decreased (P < 0.05) Kelch-like ECH-associated protein 1 (Keap1) gene transcription and enhanced (P < 0.05) NF-E2-related factor 2 (Nrf2) gene transcription in the jejunum and ileum. According to our results, BPE-induced protective effects against oxidative stress appear through the promotion of the jejunal and ileal antioxidant defense system in weaned rats, which was associated with the Nrf2–Keap1 signaling pathway.


2021 ◽  
Vol 8 ◽  
Author(s):  
Veronica D'Antonio ◽  
Mauro Serafini ◽  
Natalia Battista

Edible insects are proposed as a nutritious and environmentally sustainable alternative source to animal proteins, due to their numerous advantages in terms of reduced ecological impact and high nutritional value. However, the novelty for edible insects relies on the content of bioactive ingredients potentially able to induce a functional effect in the body. The present review summarizes the main findings on the antioxidant properties of edible insects available in the literature. A total of 30 studies involving animals, cell cultures, or in vitro experimental studies evaluating the antioxidant effect of edible insects are presented in this work. When the antioxidant activity was investigated, using a wide variety of in vitro tests and in cellular models, positive results were shown. Dietary supplementation with edible insects was also able to counteract dietary oxidative stress in animal models, restoring the balance of antioxidant enzymes and reducing the formation of oxidation damage markers. On the basis of the reviewed evidences, edible insects might represent a source of novel redox ingredients at low ecological impact able to modulate oxidative stress. However, due to the fact that majority of these evidences have been obtained in vitro and in cellular and animal models, dietary intervention trials are needed to assess the efficacy of edible insect consumption to modulate redox status in humans.


Sign in / Sign up

Export Citation Format

Share Document