Low-cost continuous measurement system to learn the relationship between the electrical conductivity and temperature in brackish waters

2021 ◽  
Vol 225 ◽  
pp. 356-363
Author(s):  
F.A. Leon ◽  
A. Ramos-Martín ◽  
C. Mendieta
10.6036/9812 ◽  
2021 ◽  
Vol 96 (4) ◽  
pp. 364-367
Author(s):  
FEDERICO LEON ZERPA ◽  
ALEJANDRO RAMOS PÉREZ

This article presents a low-cost experimental design proposal to understand and learn the relationship between the electrical conductivity CE of brackish water and its temperature T, in which an embedded system (Arduino Nano). This design has been made to be used as good practices in subjects of the University Degrees with competences in the area of production and water treatment, both for civil and industrial consumption, mainly in the School of Engineering. Industrial and Civil of the University of Las Palmas de Gran Canaria. Furthermore, this design is mainly characterized by its versatility, when considering different situations, and using free tools and open source; both regarding computer applications, as in the components and elements used. This last aspect turns out to be an important characteristic, as it will allow the design to be modified, economically, according to future needs, by the students or by the teachers. A series of tests have been implemented with different types of common salts in brackish waters, at different temperatures. Results obtained from the design are shown, following suitable methods to observe the variability of the electrical conductivity of the solutions with the temperature, and with the type of salt used. These experimental results demonstrate that the experimental design can be used to understand and learn the proposed objective, as well as to obtain the relationship between CE and T, in the form of a straight line fit. Keywords: Electrical conductivity, reverse osmosis, water quality


10.5219/1074 ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 562-565
Author(s):  
Michal Uhrinčať ◽  
Vladimír Tančin ◽  
Kristína Tvarožková ◽  
Lucia Mačuhová ◽  
Martina Vršková ◽  
...  

Measurement of electrical conductivity (EC) is a method frequently used in dairy cows during milking in milking parlours, but especially in robotic milking as a low-cost mastitis detection method. The aim of this study was to evaluate the relationship between somatic cell count (SCC) and EC of milk in sheep reared in Slovakia as factors for monitoring subclinical mastitis on the basis of a bacteriological examination of udder health. Samples were collected individually from both halves of the udder from 295 sheep of different breeds from eight farms during evening milking. Based on SCC, the samples (590) were divided into classes (SCC < 2 × 105, 2 × 105 ≤ SCC < 4 × 105, 4 × 105 ≤ SCC < 6 × 105, and SCC ≥ 6 × 105 cells.mL-1), (SCC < 7 × 105 and SCC ≥ 7 × 105 cells.mL-1) and (SCC < 1 × 105 and SCC ≥ 1 × 105 cells.mL-1) respectively. Based on the presence of pathogens in the udder halve, they were classified as “major pathogens” (14), “minor pathogens” (161) and “without pathogens” (415). The presence of a pathogen had a significant effect on the increase in EC, SCC and protein content and decrease in content of lactose. We found a significant correlation between EV and SCC at first classification only in cases where all data was analysed jointly (r = 0.531), SCC ≥ 6 × 105 (r = 0.403) and SCC < 2 × 105 (r = 0.214). In the second and third classification, we found significant correlations in both cases, the SCC < 7 × 105 (r = 0.270) and the SCC ≥ 7 × 105 (r = 0.382) and SCC < 1 × 105 (r = 0.136) and the SCC ≥ 1 × 105 (r = 0.557). The electrical conductivity showed a stronger correlation with the lactose and protein content than LogSCC. We can argue that measuring the electrical conductivity of sheep milk may be a possible alternative for mastitis detection in sheep. EC can be useful in detecting animals with level of SSC greater than 6 × 105 cells.mL-1.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1018
Author(s):  
Carola Esposito Corcione ◽  
Francesca Ferrari ◽  
Raffaella Striani ◽  
Antonio Greco

In this work, we studied the transport properties (thermal and electrical conductivity) of smart fabric materials treated with graphite nanomaterial stacks–acetone suspensions. An innovative and easy method to produce graphite nanomaterial stacks–acetone-based formulations, starting from a low-cost expandable graphite, is proposed. An original, economical, fast, and easy method to increase the thermal and electrical conductivity of textile materials was also employed for the first time. The proposed method allows the impregnation of smart fabric materials, avoiding pre-coating of the fibers, thus reducing costs and processing time, while obtaining a great increase in the transport properties. Two kinds of textiles, cotton and Lycra®, were selected as they represent the most used natural and artificial fabrics, respectively. The impact of the dimensions of the produced graphite nanomaterial stacks–acetone-based suspensions on both the uniformity of the treatment and the transport properties of the selected textile materials was accurately evaluated using several experimental techniques. An empirical relationship between the two transport properties was also successfully identified. Finally, several theoretical models were applied to predict the transport properties of the developed smart fabric materials, evidencing a good agreement with the experimental data.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3056
Author(s):  
Baiqian Shi ◽  
Stephen Catsamas ◽  
Peter Kolotelo ◽  
Miao Wang ◽  
Anna Lintern ◽  
...  

High-resolution data collection of the urban stormwater network is crucial for future asset management and illicit discharge detection, but often too expensive as sensors and ongoing frequent maintenance works are not affordable. We developed an integrated water depth, electrical conductivity (EC), and temperature sensor that is inexpensive (USD 25), low power, and easily implemented in urban drainage networks. Our low-cost sensor reliably measures the rate-of-change of water level without any re-calibration by comparing with industry-standard instruments such as HACH and HORIBA’s probes. To overcome the observed drift of level sensors, we developed an automated re-calibration approach, which significantly improved its accuracy. For applications like monitoring stormwater drains, such an approach will make higher-resolution sensing feasible from the budget control considerations, since the regular sensor re-calibration will no longer be required. For other applications like monitoring wetlands or wastewater networks, a manual re-calibration every two weeks is required to limit the sensor’s inaccuracies to ±10 mm. Apart from only being used as a calibrator for the level sensor, the conductivity sensor in this study adequately monitored EC between 0 and 10 mS/cm with a 17% relative uncertainty, which is sufficient for stormwater monitoring, especially for real-time detection of poor stormwater quality inputs. Overall, our proposed sensor can be rapidly and densely deployed in the urban drainage network for revolutionised high-density monitoring that cannot be achieved before with high-end loggers and sensors.


2013 ◽  
Vol 30 (10) ◽  
pp. 2352-2366 ◽  
Author(s):  
Dale A. Lawrence ◽  
Ben B. Balsley

Abstract The DataHawk small airborne measurement system provides in situ atmospheric measurement capabilities for documenting scales as small as 1 m and can access reasonably large volumes in and above the atmospheric boundary layer at low cost. The design of the DataHawk system is described, beginning with the atmospheric measurement requirements, and articulating five key challenges that any practical measurement system must overcome. The resulting characteristics of the airborne and ground support components of the DataHawk system are outlined, along with its deployment, operating, and recovery modes. Typical results are presented to illustrate the types and quality of data provided by the current system, as well as the need for more of these finescale measurements. Particular focus is given to the DataHawk's ability to make very-high-resolution measurements of a variety of atmospheric variables simultaneously, with emphasis given to the measurement of two important finescale turbulence parameters, (the temperature turbulence structure constant) and ɛ (the turbulent energy dissipation rate). Future sensing possibilities and limitations using this approach are also discussed.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1297
Author(s):  
Viktor Skrickij ◽  
Eldar Šabanovič ◽  
Dachuan Shi ◽  
Stefano Ricci ◽  
Luca Rizzetto ◽  
...  

Railway infrastructure must meet safety requirements concerning its construction and operation. Track geometry monitoring is one of the most important activities in maintaining the steady technical conditions of rail infrastructure. Commonly, it is performed using complex measurement equipment installed on track-recording coaches. Existing low-cost inertial sensor-based measurement systems provide reliable measurements of track geometry in vertical directions. However, solutions are needed for track geometry parameter measurement in the lateral direction. In this research, the authors developed a visual measurement system for track gauge evaluation. It involves the detection of measurement points and the visual measurement of the distance between them. The accuracy of the visual measurement system was evaluated in the laboratory and showed promising results. The initial field test was performed in the Vilnius railway station yard, driving at low velocity on the straight track section. The results show that the image point selection method developed for selecting the wheel and rail points to measure distance is stable enough for TG measurement. Recommendations for the further improvement of the developed system are presented.


Sign in / Sign up

Export Citation Format

Share Document