Failure Projection of Corroding Bridge Post-Tensioned Tendons Considering Partitioned Attack

CORROSION ◽  
10.5006/3728 ◽  
2021 ◽  
Author(s):  
William Hartt

Post-tensioning (PT) has evolved to become an important technology for affecting integrity of large, increasingly sophisticated reinforced concrete structures. In the case of bridges, however, tendon failures resulting from wire/strand corrosion have been reported as early as two years post construction. In response to this, a recent study introduced, evaluated, and employed an analytical modeling approach that projects timing of such failures, given statistics which characterize the distribution of wire corrosion rate. These efforts all considered that corrosion penetration is normally distributed across the entire population of wires comprising all tendons. However, it has been reported that corrosion, resultant wire and strand fractures, and tendon failures can be confined to a specific location on a bridge structure as a result of variations in material properties or construction improprieties (or both). Also, the distribution of corrosion rates can differ within individual tendons because of, first, variations in grout structure and composition and, second, presence of voids and free water. The present research extends these previous efforts and addresses such situations; that is, those where the corrosion rate distribution is spatially variable. The results are discussed within the context of better assuring structural integrity for PT bridges.

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3789
Author(s):  
Michele Lanzetta ◽  
Marco Picchi Picchi Scardaoni ◽  
Armin Gharibi ◽  
Claudia Vivaldi

This paper explores the modeling of incipient cutting by Abaqus, LS-Dyna, and Ansys Finite Element Methods (FEMs), by comparing also experimentally the results on different material classes, including common aluminum and steel alloys and an acetal polymer. The target application is the sustainable manufacturing of gecko adhesives by micromachining a durable mold for injection molding. The challenges posed by the mold shape include undercuts and sharp tips, which can be machined by a special diamond blade, which enters the material, forms a chip, and exits. An analytical model to predict the shape of the incipient chip and of the formed grove as a function of the material properties and of the cutting parameters is provided. The main scientific merit of the current work is to approach theoretically, numerically, and experimentally the very early phase of the cutting tool penetration for new sustainable machining and micro-machining processes.


2021 ◽  
pp. 174425912198938
Author(s):  
Michael Gutland ◽  
Scott Bucking ◽  
Mario Santana Quintero

Hygrothermal models are important tools for assessing the risk of moisture-related decay mechanisms which can compromise structural integrity, loss of architectural features and material. There are several sources of uncertainty when modelling masonry, related to material properties, boundary conditions, quality of construction and two-dimensional interactions between mortar and unit. This paper examines the uncertainty at the mortar-unit interface with imperfections such as hairline cracks or imperfect contact conditions. These imperfections will alter the rate of liquid transport into and out of the wall and impede the liquid transport between mortar and masonry unit. This means that the effective liquid transport of the wall system will be different then if only properties of the bulk material were modelled. A detailed methodology for modelling this interface as a fracture is presented including definition of material properties for the fracture. The modelling methodology considers the combined effect of both the interface resistance across the mortar-unit interface and increase liquid transport in parallel to the interface, and is generalisable to various combinations of materials, geometries and fracture apertures. Two-dimensional DELPHIN models of a clay brick/cement-mortar masonry wall were created to simulate this interaction. The models were exposed to different boundary conditions to simulate wetting, drying and natural cyclic weather conditions. The results of these simulations were compared to a baseline model where the fracture model was not included. The presence of fractures increased the rate of absorption in the wetting phase and an increased rate of desorption in the drying phase. Under cyclic conditions, the result was higher peak moisture contents after rain events compared to baseline and lower moisture contents after long periods of drying. This demonstrated that detailed modelling of imperfections at the mortar-unit interface can have a definitive influence on results and conclusions from hygrothermal simulations.


2019 ◽  
Vol 11 (1) ◽  
pp. 1-12
Author(s):  
Mohammed Lamine Moussaoui ◽  
Mohamed Chabaat

Purpose The purpose of this paper is to present a numerical analysis of structural monitoring for damage zones detection. The study is performed with Ansys finite element software, which reads in batch mode programming a previously generated mesh data file and computes the transient dynamic solution for each time-step iteration within an analysis time range. Design/methodology/approach The approach itself is applied on a bridge structure which can be potentially subjected to damage zones due to severe loads cases and or earthquakes vibrations. The ideal Von Mises failure criterion ellipsoid envelope is applied for the detection of overstepped computed stresses and strains. Findings This numerical analysis allows computing, for each time-step iteration, the dynamic displacements at each degree of freedom and the corresponding stresses and strains inside the elements under the action of several times dependent loads cases. Practical implications Several simulations are considered to quantify the external loads. Originality/value The material properties of reinforced concrete RC are calculated for an existing specific bridge structure case. The RC strength is then introduced from the basic compounds material properties using the corresponding volumes fractions.


Author(s):  
Yongjian Gao ◽  
Yinbiao He ◽  
Ming Cao ◽  
Yuebing Li ◽  
Shiyi Bao ◽  
...  

In-Vessel Retention (IVR) is one of the most important severe accident mitigation strategies of the third generation passive Nuclear Power Plants (NPP). It is intended to demonstrate that in the case of a core melt, the structural integrity of the Reactor Pressure Vessel (RPV) is assured such that there is no leakage of radioactive debris from the RPV. This paper studied the IVR issue using Finite Element Analyses (FEA). Firstly, the tension and creep testing for the SA-508 Gr.3 Cl.1 material in the temperature range of 25°C to 1000°C were performed. Secondly, a FEA model of the RPV lower head was built. Based on the assumption of ideally elastic-plastic material properties derived from the tension testing data, limit analyses were performed under both the thermal and the thermal plus pressure loading conditions where the load bearing capacity was investigated by tracking the propagation of plastic region as a function of pressure increment. Finally, the ideal elastic-plastic material properties incorporating the creep effect are developed from the 100hr isochronous stress-strain curves, limit analyses are carried out as the second step above. The allowable pressures at 0 hr and 100 hr are obtained. This research provides an alternative approach for the structural integrity evaluation for RPV under IVR condition.


Author(s):  
Komei Suzuki ◽  
Etsuo Murai ◽  
Yasuhiko Tanaka ◽  
Iku Kurihara ◽  
Tomoharu Sasaki ◽  
...  

Closure head forging (SA508, Gr.3 Cl.1) integrated with flange for PWR reactor pressure vessel has been developed. This is intended to enhance structural integrity of closure head resulted in elimination of ISI, by eliminating weld joint between closure head and flange in the conventional design. Manufacturing procedures have been established so that homogeneity and isotropy of the material properties can be assured in the closure head forging integrated with flange. Acceptance tensile and impact test specimens are taken and tested regarding the closure head forging integrated with flange as very thick and complex forgings. This paper describes the manufacturing technologies and material properties of the closure head forging integrated with flange.


Author(s):  
Nak-Kyun Cho ◽  
Youngjae Choi ◽  
Haofeng Chen

Abstract Supercritical boiler system has been widely used to increase efficiency of electricity generation in power plant industries. However, the supercritical operating condition can seriously affect structural integrity of power plant components due to high temperature that causes degradation of material properties. Pressure reducing valve is an important component being employed within a main steam line of the supercritical boiler, which occasionally thermal-fatigue failure being reported. This research has investigated creep-cyclic plastic behaviour of the pressure reducing valve under combined thermo-mechanical loading using a numerical direct method known as extended Direct Steady Cyclic Analysis of the Linear Matching Method Framework (LMM eDSCA). Finite element model of the pressure-reducing valve is created based on a practical valve dimension and temperature-dependent material properties are applied for the numerical analysis. The simulation results demonstrate a critical loading component that attributes creep-fatigue failure of the valve. Parametric studies confirm the effects of magnitude of the critical loading component on creep deformation and total deformation per loading cycle. With these comprehensive numerical results, this research provides engineer with an insight into the failure mechanism of the pressure-reducing valve at high temperature.


2015 ◽  
Vol 1111 ◽  
pp. 187-192
Author(s):  
Corina Sosdean ◽  
Liviu Marsavina ◽  
Geert de Schutter

Reinforced concrete (RC) became one of the most widely used modern building materials. In the last decades a great interest has been shown in studying reinforcement corrosion as it became one of the main factors of degradation and loss of structural integrity of RC structures. The degradation process is accelerated in the case of RC structures situated in aggressive environments like marine environments or subjected to de-icing salts. In this paper it is shown how steel corrosion of the embedded rebars occurs and how this affects the service life of reinforced concrete structures. Also, an experimental study regarding the combined effect of carbonation and chloride ingress was realized. Samples with and without rebars were drilled from a RC slab which was stored in the laboratory for two years. Non-steady state migration tests were realized in order to determine the chloride profile, while the carbonation depth was measured using the colorimetric method based on phenolphthalein spraying. It was concluded that carbonation has a significant effect on chloride ingress, increasing it.


1985 ◽  
Vol 38 (8) ◽  
pp. 1133 ◽  
Author(s):  
BG Pound ◽  
MH Abdurrahman ◽  
MP Glucina ◽  
GA Wright ◽  
RM Sharp

The corrosion rates of low-carbon steel, and 304, 316 and 410/420 stainless steels in simulated geothermal media containing hydrogen sulfide have been measured by means of the polarization resistance technique. Good agreement was found between weight-loss and polarization resistance measurements of the corrosion rate for all the metals tested. Carbon steel formed a non-adherent film of mackinawite (Fe1 + xS). The lack of protection afforded to the steel by the film resulted in an approximately constant corrosion rate. The stainless steels also exhibited corrosion rates that were independent of time. However, the 410 and 420 alloys formed an adherent film consisting mainly of troilite ( FeS ) which provided only limited passivity. In contrast, the 304 and 316 alloys appeared to be essentially protected by a passive film which did not seem to involve an iron sulfide phase. However, all the stainless steels, particularly the 410 and 420 alloys, showed pitting, which indicated that some breakdown of the passive films occurred.


2014 ◽  
Vol 1665 ◽  
pp. 195-202 ◽  
Author(s):  
Osamu Kato ◽  
Hiromi Tanabe ◽  
Tomofumi Sakuragi ◽  
Tsutomu Nishimura ◽  
Tsuyoshi Tateishi

ABSTRACTCorrosion behavior is a key issue in the assessment of disposal performance for activated waste such as spent fuel assemblies (i.e., hulls and end-pieces) because corrosion is expected to initiate radionuclide (e.g., C-14) leaching from such waste. Because the anticipated corrosion rate is extremely low, understanding and modeling Zircaloy (Zry) corrosion behavior under geological disposal conditions is important in predicting very long-term corrosion. Corrosion models applicable in the higher temperature ranges of nuclear reactors have been proposed based on considerable testing in the 523−633 K temperature range.In this study, corrosion tests were carried out to confirm the applicability of such existing models to the low temperature range of geological disposal, and to examine the influence of material, environmental, and other factors on corrosion rates under geological disposal conditions. A characterization analysis of the generated oxide film was also performed.To confirm applicability, the corrosion rate of Zry-4 in pure water with a temperature change from 303 K to 433 K was obtained using a hydrogen measuring technique, giving a corrosion rate for 180 days of 8 × 10-3 μm/y at 303 K.To investigate the influence of various factors, corrosion tests were carried out. The corrosion rates for Zry-2 and Zry-4 were almost same, and increased with a temperature increase from 303 K to 353 K. The influence of pH (12.5) compared with pure water was about 1.4 at 180 days at 303 K.


1970 ◽  
Vol 9 (9) ◽  
pp. 39-43
Author(s):  
Basu Ram Aryal ◽  
Jagadeesh Bhattarai

Simultaneous additions of tungsten, chromium and zirconium in the chromium- and zirconium-enriched sputter-deposited binary W-xCr and W-yZr are effective to improve the corrosion resistance property of the ternary amorphous W- xCr-yZr alloys after immersion for 240 h in 1 M NaOH solution open to air at 25°C. The corrosion rates of all the examined sputter-deposited (10-57)W-(18-42)Cr-(25-73)Zr alloys is higher than those of alloy-constituting elements (that is, tungsten, chromium and zirconium) in aggressive 1 M NaOH solution open to air at 25°C. The corrosion rates of all the examined sputter−deposited W–xCr–yZr alloys containing 10-57 at% tungsten, 18-42 at% chromium and 25-73 at% zirconium were in the range of 1.5-2.5 × 10−3 mm/y or lower which are more than two orders of magnitude lower than that of sputter-deposited tungsten and even about one order of magnitude lower than those of the sputter-deposited zirconium in 1 M NaOH solution. Keywords: Ternary W–Cr–Zr alloys; Amorphous; Corrosion rate; Open circuit potential; 1 M NaOH. DOI: http://dx.doi.org/10.3126/sw.v9i9.5516 SW 2011; 9(9): 39-43


Sign in / Sign up

Export Citation Format

Share Document