scholarly journals Folic acid and vitamin B12 ameliorate nicotine-induced testicular toxicity in rats

Biomedicine ◽  
2020 ◽  
Vol 39 (2) ◽  
pp. 353-368
Author(s):  
Dibyendu Ray ◽  
Ankita Bhattacharjee ◽  
Oly Banerjee ◽  
Shilpi Kumari Prasad ◽  
Siddhartha Singh ◽  
...  

Introduction and Aim: Cigarette smoking, one of the fundamental roots of preventable morbidity, has a myriad of notorious effects. Nicotine is the most bountiful and symbolic constituent of cigarette smoke. The liaison between smoking and infertility has been investigated for decades; but it’s still dubious whether the noxious effects of cigarette smoking on testis and sperm characteristics are by virtue of nicotine. Therefore, the current study interrogated the ameliorative effects of folic acid and vitamin B12 on nicotine induced catastrophe in testicular tissue and sperm characters in male albino rats. Materials and Methods: Rats were treated with nicotine (3 mg/kg body weight/day, intraperitoneal) with or without folic acid (36µg/kg body weight/day, orally) and vitamin B12 (0.63µg/kg body weight/ day, orally) for 21 days. Sperm qualities were analyzed for motility and morphology. Various oxidative and anti- oxidative stress parameters, pro inflammatory cytokines levels, hormonal assays were performed. Results: Findings marked that nicotine caused degenerative changes in the testicular tissue. Supplementation with folic acid and vitamin B12 reversed these results along with suppressing the nicotine induced changes in TNF- ?, IL-6, and markers of oxidative stress. Moreover, folic acid and vitamin B12 in combination also significantly blunted the altered activities of testicular key androgenic enzymes, plasma levels of testosterone, LH, and FSH following nicotine exposure. Conclusion: In closure, testimonies manifested that folic acid and vitamin B12 may act as plausible strategy against oxidative stress, which is a pivotal step in nicotine-induced reproductive toxicity, and bettering functional status of testicular tissue by scavenging free radicals and hindering the generation of pro- inflammatory cytokines.  

2019 ◽  
Vol 1 ◽  
pp. 105-117
Author(s):  
A. Banerjee ◽  
P. Nandi ◽  
C. Bhattacharya ◽  
Z. Kabir ◽  
S. Mukherjee ◽  
...  

<br/><b>Purpose:</b> To investigate the involvement of oxidative stress in Cadmium (Cd) induced alteration in the functional status of the liver. And to assess the efficacy of folic acid and vitamin B12 in preventing Cd-induced damage in the same. <br/><b>Materials and methods:</b> The experiment was carried out for four weeks. For the experiment, 25 healthy male adult Wistar albino rats were randomly selected and were divided into five equal groups and treated as control, treated with Cd, supplemented with vitamin B12 and folic acid and in the combination of these two. After 28 days the liver function enzymes and oxidative stress parameters were measured. <br/><b>Results:</b> Cd is the silent killer of the hepatic system through the induction of oxidative stress in male rats. From this investigation, it is evident that the folic acid+vitamin B12 possess significant hepatoprotective and antioxidant activity against Cd-induced hepatotoxicity in the rat model. In addition, results revealed that the folic acid alone and or in combination with vitamin B12 blunted the hepatotoxic effect significantly. <br/><b>Conclusions:</b> Based on results obtained, it can be concluded that folic acid and vitamin B12 offer a protective effect in Cd-induced oxidative stress associated with hepatocellular injury. Folic acid and vitamin B12 can be considered as a potent natural antioxidant which has the capacity to provide protection against Cd-induced oxidative stress in the liver in rats. However, to elucidate the exact mechanism of this modulatory effect and to examine its potential therapeutic effects further studies are essential.


2015 ◽  
Vol 8 (2) ◽  
pp. 103-111 ◽  
Author(s):  
Ankita Bhattacharjee ◽  
Shilpi Kumari Prasad ◽  
Swagata Pal ◽  
Bithin Maji ◽  
Alak Kumar Syamal ◽  
...  

Abstract Although cigarette smoking is associated with insulin resistance and an increased risk for type 2 diabetes, few studies have examined the effect of nicotine on the adult endocrine pancreas. In this study, male Wister rats were treated with nicotine (3 mg/kg body weight/day) with or without supplementation of folic acid (36 μg/kg body weight/day) or vitamin B12 (0.63 μg/kg body weight/day) alone or in combination. Fasting blood glucose, insulin and HBA1C level and different oxidative and anti-oxidative stress parameters were measured and pancreatic tissue sections were stained with eosin-haematoxylene. Data were analysed by nonparametric statistics. The results revealed that nicotine induced prediabetes condition with subsequent damage to pancreatic islets in rats. Nicotine also caused oxidative stress in pancreatic tissue as evidenced by increased nitric oxide and malondialdehyde level and decreased superoxide dismutase, catalase and reduced glutathione level. Compared to vitamin B12 supplementation, folic acid blunted the nicotine-induced toxicity in pancreatic islets with higher efficacy. Further, folic acid and vitamin B12 in combination were able to confer significant protection on pancreatic islets against nicotine induced toxicity. These results suggest that supplementation of folic acid and vitamin B12 in combination may be a possible strategy of detoxification against nicotine-induced toxicity in pancreatic islets of the rat.


2018 ◽  
Vol 1 (3) ◽  
pp. 20-31 ◽  
Author(s):  
Amal A Halawa ◽  
Mohamed A El-Adl ◽  
Mohamed F Hamed ◽  
Ahmed Z Balboula ◽  
Mohammed A Elmetwally

Lipopolysaccharide (LPS) is a component of the outer membrane of gram negative bacteria. LPS challenging allows switching transcription of proinflammatory cytokines on via over stimulation of Toll-like receptors (TLRs) signaling pathway with subsequent pathogenic inflammatory response. We investigated the possible reproductive toxicity of LPS in male Wister albino rats. Oxidative stress markers, antioxidant status and caspase-3 activity were analyzed in testicular tissues of rats exposed to either saline or LPS (4 mg/kg BW, ip; 0.18 of the LD50). The samples were collected at 6 h and 72 h after injection of LPS. A significant reduction in testicular reduced glutathione (GSH), glutathione-S-transferase (GST) and superoxide dismutase (SOD) was observed at 72 h compared to control group. Total antioxidant capacity was decreased at 6 h with additional significant reduction at 72 h. Catalase activity was reduced significantly at both 6 and 72 h. Malondialdehyde (MDA) was increased (P ≤ 0.05) in LPS injected rats without variation between 6 and 72 h. A significant increase in nitric oxide (NO) was observed at 72 h after injection. A time-dependent increase in LPS-treated groups was observed in the concentration of caspase-3.Histopathological analysis revealed degenerative changes and necrosis of seminiferous tubules after 6 h with further accumulation of eosinophilic edematous transudate in its lumen after 72 h. In conclusion, by increasing time of exposure, LPS induced lipid peroxidation, oxidative stress, reduced testicular antioxidant capacity and encouraged testicular apoptosis which could be possible mechanisms for impairment of testicular function.


Biomolecules ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1519
Author(s):  
Mustafa T. Ardah ◽  
Greeshma Bharathan ◽  
Tohru Kitada ◽  
M. Emdadul Haque

Parkinson’s disease (PD) is one of the most common neurodegenerative diseases and is characterized by progressive dopaminergic neurodegeneration in the substantia nigra pars compacta area. In the present study, treatment of EA for 1 week at a dose of 10 mg/kg body weight prior to MPTP (25 mg/kg body weight) was carried out. MPTP administration caused oxidative stress, as evidenced by decreased activities of superoxide dismutase and catalase, and the depletion of reduced glutathione with a concomitant rise in the lipid peroxidation product, malondialdehyde. It also significantly increased the pro-inflammatory cytokines and elevated the inflammatory mediators like cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in the striatum. Immunohistochemical analysis revealed a loss of dopamine neurons in the SNc area and a decrease in dopamine transporter in the striatum following MPTP administration. However, treatment with EA prior to MPTP injection significantly rescued the dopaminergic neurons and dopamine transporter. EA treatment further restored antioxidant enzymes, prevented the depletion of glutathione and inhibited lipid peroxidation, in addition to the attenuation of pro-inflammatory cytokines. EA also reduced the levels of COX-2 and iNOS. The findings of the present study demonstrate that EA protects against MPTP-induced PD and the observed neuroprotective effects can be attributed to its potent antioxidant and anti-inflammatory properties.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Samira Ahmadvand Koohsari ◽  
Abdorrahim Absalan ◽  
Davood Azadi

AbstractThe therapeutic effects of mesenchymal stem cells-extracellular vesicles have been proved in many inflammatory animal models. In the current study, we aimed to investigate the effect of extracellular vesicles (EVs) derived from human umbilical cord-MSC (hUCSC-EV) on the clinical score and inflammatory/anti-inflammatory cytokines on the EAE mouse model. After induction of EAE in C57Bl/6 mice, they were treated intravenously with hUCSC-EV or vehicle. The clinical score and body weight of all mice was registered every day. On day 30, mice were sacrificed and splenocytes were isolated for cytokine assay by ELISA. Cytokine expression of pro-/anti-inflammatory cytokine by real-time PCR, leukocyte infiltration by hematoxylin and eosin (H&E) staining, and the percent of glial fibrillary acidic protein (GFAP) and myelin basic protein (MBP) positive cells by immunohistochemistry were assessed in the spinal cord. Our results showed that hUCSC-EV-treated mice have lower maximum mean clinical score (MMCS), pro-inflammatory cytokines, and inflammatory score in comparison to the control mice. We also showed that hUCSC-EV administration significantly improved body weight and increased the anti-inflammatory cytokines and the frequency of Treg cells in the spleen. There was no significant difference in the percent of GFAP and MBP positive cells in the spinal cord of experimental groups. Finally, we suggest that intravenous administration of hUCSC-EV alleviate induce-EAE by reducing the pro-inflammatory cytokines, such as IL-17a, TNF-α, and IFN-γ, and increasing the anti-inflammatory cytokines, IL-4 and IL-10, and also decrease the leukocyte infiltration in a model of MS. It seems that EVs from hUC-MSCs have the same therapeutic effects similar to EVs from other sources of MSCs, such as adipose or bone marrow MSCs.


2016 ◽  
Vol 35 (12) ◽  
pp. 1252-1263 ◽  
Author(s):  
SS Palabiyik ◽  
E Karakus ◽  
Z Halici ◽  
E Cadirci ◽  
Y Bayir ◽  
...  

Acetaminophen (APAP) overdose could induce liver damage and lead to acute liver failure. The treatment of APAP overdoses could be improved by new therapeutic strategies. Thymus spp., which has many beneficial effects and has been used in folk medicine, is one such potential strategy. In the present study, the hepatoprotective activity of the main constituents of Thymus spp., carvacrol and thymol, were evaluated in light of APAP-induced hepatotoxicity. We hoped to understand the hepatoprotective mechanism of these agents on the antioxidant system and pro-inflammatory cytokines in vitro. Dose-dependent effects of thymol and carvacrol (25, 50, and 100 µM) were tested on cultured HepG2 cells. N-Acetylcysteine (NAC) was tested as positive control. We showed that APAP inhibited HepG2 cell growth by inducing inflammation and oxidative stress. Incubating APAP-exposed HepG2 cells with carvacrol and thymol for 24 h ameliorated this inflammation and oxidative stress. We also evaluated alanine transaminase and lactate dehydrogenase levels of HepG2 cells. We found that thymol and carvacrol protected against APAP-induced toxicity in HepG2 cells by increasing antioxidant activity and reducing pro-inflammatory cytokines, such as tumor necrosis factor α and interleukin 1β. Taking together high-dose thymol and carvacrol treatment has an effect close to NAC treatment in APAP toxicity, but thymol has better treatment effect than carvacrol.


Amino Acids ◽  
2021 ◽  
Author(s):  
Tatsuya Hasegawa ◽  
Ami Mizugaki ◽  
Yoshiko Inoue ◽  
Hiroyuki Kato ◽  
Hitoshi Murakami

AbstractIntestinal oxidative stress produces pro-inflammatory cytokines, which increase tight junction (TJ) permeability, leading to intestinal and systemic inflammation. Cystine (Cys2) is a substrate of glutathione (GSH) and inhibits inflammation, however, it is unclear whether Cys2 locally improves intestinal barrier dysfunction. Thus, we investigated the local effects of Cys2 on oxidative stress-induced TJ permeability and intestinal inflammatory responses. Caco-2 cells were cultured in a Cys2-supplemented medium for 24 h and then treated with H2O2 for 2 h. We assessed TJ permeability by measuring transepithelial electrical resistance and the paracellular flux of fluorescein isothiocyanate–dextran 4 kDa. We measured the concentration of Cys2 and GSH after Cys2 pretreatment. The mRNA expression of pro-inflammatory cytokines was assessed. In addition, the levels of TJ proteins were assessed by measuring the expression of TJ proteins in the whole cells and the ratio of TJ proteins in the detergent-insoluble fractions to soluble fractions (IS/S ratio). Cys2 treatment reduced H2O2-induced TJ permeability. Cys2 did not change the expression of TJ proteins in the whole cells, however, suppressed the IS/S ratio of claudin-4. Intercellular levels of Cys2 and GSH significantly increased in cells treated with Cys2. Cys2 treatment suppressed the mRNA expression of pro-inflammatory cytokines, and the mRNA levels were significantly correlated with TJ permeability. In conclusion, Cys2 treatment locally reduced oxidative stress-induced intestinal barrier dysfunction possively due to the mitigation of claudin-4 dislocalization. Furthermore, the effect of Cys2 on the improvement of intestinal barrier function is related to the local suppression of oxidative stress-induced pro-inflammatory responses.


Sign in / Sign up

Export Citation Format

Share Document