scholarly journals GREEN SYNTHESIS OF SILVER NANOPARTICLES FROM FRUIT RIND EXTRACT OF GARCINIA MANGOSTANA L. AND EVALUATION OF ANTIBACTERIAL PROPERTIES

2021 ◽  
Vol 21 (2) ◽  
Author(s):  
Manju Madhavan ◽  
Elsa Rose P.J. ◽  
Arunima Francis ◽  
Grace Maria Benny ◽  
Anila Wilson

Nanotechnology is an emerging area of science that involves the engineering of nano sized particles of various materials. Among the various nanoparticles, the silver nanoparticles are used in various applications due to their unique characters. The production of silver nanoparticles using a chemical method is harmful and produces toxic substances as by-products, so the aim of our study was to green synthesis silver nanoparticles using the fruit rind of Garcinia mangostana L. which is being discarded as a waste material. Aqueous rind extract of G. mangostana was prepared and synthesis of silver nanoparticles was analysed by UV-Vis spectrophotometer by optimizing various parameters like pH, time and concentration of extract. The nanoparticles were characterized using UV-Vis spectroscopy and the peak was obtained between the wave length of 410 - 433 nm in various treatments. The antibacterial activities of synthesized silver nanoparticles were tested against both gram negative (Pseudomonas) and gram positive (Staphylococcus) bacteria using the well diffusion method. The aqueous extract shows the remarkable zone of inhibition against Pseudomonas and Staphylococcus.

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4041
Author(s):  
Adriana Cecilia Csakvari ◽  
Cristian Moisa ◽  
Dana G. Radu ◽  
Leonard M. Olariu ◽  
Andreea I. Lupitu ◽  
...  

Cannabis sativa L. (hemp) is a plant used in the textile industry and green building material industry, as well as for the phytoremediation of soil, medical treatments, and supplementary food products. The synergistic effect of terpenes, flavonoids, and cannabinoids in hemp extracts may mediate the biogenic synthesis of metal nanoparticles. In this study, the chemical composition of aqueous leaf extracts of three varieties of Romanian hemp (two monoecious, and one dioecious) have been determined by Fourier-Transformed Infrared spectroscopy (FT-IR), high-performance liquid chromatography, and mass spectrometry (UHPLC-DAD-MS). Then, their capability to mediate the green synthesis of silver nanoparticles (AgNPs) and their pottential antibacterial applications were evaluated. The average antioxidant capacity of the extracts had 18.4 ± 3.9% inhibition determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH•) and 78.2 ± 4.1% determined by 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS™) assays. The total polyphenolic content of the extracts was 1642 ± 32 mg gallic acid equivalent (GAE) L−1. After this, these extracts were reacted with an aqueous solution of AgNO3 resulting in AgNPs, which were characterized by UV−VIS spectroscopy, FT-IR, scanning electron microscopy (SEM-EDX), and dynamic light scattering (DLS). The results demonstrated obtaining spherical, stable AgNPs with a diameter of less than 69 nm and an absorbance peak at 435 nm. The mixture of extracts and AgNPs showed a superior antioxidant capacity of 2.3 ± 0.4% inhibition determined by the DPPH• assay, 88.5 ± 0.9% inhibition as determined by the ABTS•+ assay, and a good antibacterial activity against several human pathogens: Escherichia coli, Klebsiella pneumoniae, Pseudomonas fluorescens, and Staphylococcus aureus.


2013 ◽  
Vol 57 (10) ◽  
pp. 4945-4955 ◽  
Author(s):  
Divya Prakash Gnanadhas ◽  
Midhun Ben Thomas ◽  
Rony Thomas ◽  
Ashok M. Raichur ◽  
Dipshikha Chakravortty

ABSTRACTThe emergence of multidrug-resistant bacteria is a global threat for human society. There exist recorded data that silver was used as an antimicrobial agent by the ancient Greeks and Romans during the 8th century. Silver nanoparticles (AgNPs) are of potential interest because of their effective antibacterial and antiviral activities, with minimal cytotoxic effects on the cells. However, very few reports have shown the usage of AgNPs for antibacterial therapyin vivo. In this study, we deciphered the importance of the chosen methods for synthesis and capping of AgNPs for their improved activityin vivo. The interaction of AgNPs with serum albumin has a significant effect on their antibacterial activity. It was observed that uncapped AgNPs exhibited no antibacterial activity in the presence of serum proteins, due to the interaction with bovine serum albumin (BSA), which was confirmed by UV-Vis spectroscopy. However, capped AgNPs [with citrate or poly(vinylpyrrolidone)] exhibited antibacterial properties due to minimized interactions with serum proteins. The damage in the bacterial membrane was assessed by flow cytometry, which also showed that only capped AgNPs exhibited antibacterial properties, even in the presence of BSA. In order to understand thein vivorelevance of the antibacterial activities of different AgNPs, a murine salmonellosis model was used. It was conclusively proved that AgNPs capped with citrate or PVP exhibited significant antibacterial activitiesin vivoagainstSalmonellainfection compared to uncapped AgNPs. These results clearly demonstrate the importance of capping agents and the synthesis method for AgNPs in their use as antimicrobial agents for therapeutic purposes.


2021 ◽  
Vol 10 (3) ◽  
pp. 16-24
Author(s):  
Sherin Monichan ◽  
P. Mosae Selvakumar ◽  
Christine Thevamithra ◽  
M. S. A. Muthukumar Nadar ◽  
Jesse Joel

Silver nanoparticles has been used since ages, even till now it is exploited in almost all areas like medicine, textiles, industries, cosmetics, purification, dying and many more. There are many approaches which are used to synthesize silver nanoparticles. However, these approaches are either harmful to the environment or very costly. Therefore, green synthesis of silver nanoparticles (AgNPs) using leaves of Filicium decipiens eco-friendly and a very reliable method to procure AgNPs. Characterization of synthesized AgNPs were then done using UV-Vis spectroscopy and fluorescence which confirmed the formation of AgNPs, scanning electron microscope (SEM)confirmed its shape to be round and X-ray diffraction (XRD) determined its crystalline nature as face centered cubic structure. Furthermore, Dynamic Light Scattering (DLS) was also done in order to know the average diameter and zeta potential of AgNPs. However, it did not show potential results due to the aggregates formed during the green synthesis of AgNPs. In addition to this, anti-microbial test against bacteria such as gram negative (Escherichia. Coli) and gram positive (Bacillus.spc) were done using well-diffusion method and also its application of antimicrobial activity was tested over fabric to understand its application in textile industries. In both the cases, AgNPs showed more efficiency in gram negative bacteria than gram- positive.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Mathivathani Kandiah ◽  
Kavishadhi N. Chandrasekaran

The present study describes the antioxidant, antimicrobial, and photocatalytic activity of silver nanoparticles (AGNPs) synthesized using six varieties of Catharanthus roseus flower extracts for the first time. Initially, the synthesized AgNPs were visually confirmed by color change. Further, the formation, size, and shape of the synthesized AgNPs were characterized by UV-Vis spectroscopy and scanning electron microscopy (SEM). The SEM image of purple flower AgNPs and the calculated bandgap energies of the synthesized AgNPs showed that the synthesized AgNPs were in the range of 0–30 nm. Qualitative phytochemical analysis revealed the presence of the phytocompounds that were responsible for the capping, formation, bioreduction, and stabilization of AgNPs. The antioxidant ability of the AgNPs and their respective flower extracts were analyzed using TFC, TPC, TAC, DPPH, FRAP, and IC50 assays. The results of the antioxidant assays indicated that the AgNPs showed higher antioxidant activity compared to their respective flower extracts. The synthesized AgNPs showed significant antimicrobial activity against Gram-negative Escherichia coli compared to Gram-positive Staphylococcus aureus assayed using the agar well diffusion method. Furthermore, the photocatalytic activity of the synthesized purple flower AgNPs at two different concentrations 5000 ppm and 333 ppm was analyzed by the removal of methyl orange dye from an aqueous solution under sunlight irradiation in the presence of NaBH4 catalyst. Results indicated that 333 ppm purple flower AgNPs exhibited an efficient photocatalytic activity in the degradation of methyl orange compared to 5000 ppm purple flower AgNPs in 20 minutes. Thus, the results obtained indicated that Catharanthus roseus is an ecofriendly source for the green synthesis of AgNPs which can be used as a novel antioxidant, antimicrobial, and photocatalytic agent; thereby, it can be used in a variety of applications to improve the quality of human life.


2018 ◽  
Vol 4 (5) ◽  
pp. 552-554
Author(s):  
M. Karthikeyan ◽  
A. Jafar Ahamed ◽  
P. Vijaya Kumar

This present work describes the synthesis of LaCe co-doped zinc oxide (ZnO) nanoparticles (NPs) prepared by green method using Gymnema sylvestre (G. sylvestre) leaves as reducing as well as capping agent. Green synthesis method avoids inert gases, high pressure, laser radiation, high temperature, toxic chemicals etc. as compared to conventional method like sol-gel technique method, laser ablation method, solvothermal method, inert gas condensation method and chemical reduction method. The synthesized LaCe co-doped ZnO NPs was characterized by X-Ray diffraction (XRD), field emission scanning electron microscopy (FESEM), elemental analysis (EADX), Fourier transform infrared spectroscopy (FTIR), UV-vis spectroscopy and photoluminescence (PL). The LaCe co-doped ZnO NPs was tested against clinical pathogens such as gram positive G+ (Staphylococcus aureus and Streptococcus pneumoniae) and gram negative G- (Klebsiella pneumoniae, Shigella sydenteriae, Escherichia coli, Pseudomonas aeruginosa and Protus vulgaris) bacterial strains using agar well diffusion method.


Nano Hybrids ◽  
2013 ◽  
Vol 3 ◽  
pp. 37-49 ◽  
Author(s):  
Shweta Rajawat ◽  
M.S. Qureshi

Silver nanoparticles are the most promising nanomaterial with antibacterial properties. Recent study of resistance to most potential antibiotics promotes research in the bactericidal activity of the silver nanoparticles. In this work, the effect of biosynthesized silver nanoparticles, in combination with gentamicin and ampicillin, on Pseudomonas Aeruginosa bacteria has been studied. Pseudomonas Aeruginosa is a common bacterium that can cause infections which are generalized as inflammation and sepsis. The results show that the bactericidal properties of the nanoparticles depends on the size of the as-synthesized silver nanoparticles as nanoparticles of diameter ~120 nm only have a direct interaction with the bacteria. It is observed that the antibacterial activities of antibiotics increase in the presence of AgNPs against test strains. Silver nanoparticles were synthesized elctrolytically using silver wire of 99% purity as anode and carbon rod wrapped with LDPE as cathode. 0.01 N Silver nitrate was used as an electrolyte. The process is termed as biosynthesis, because tea extract was used used as the capping agent which is also a very mild reducing agent. The polyphenols theaflavins and thearubigins, present in tea perform the role of stabilizing or capping agents due to their bulky and steric nature. A brown colored colloidal solution of silver nanoparticles is obtained. The as-synthesized silver nanoparticles were characterized using XRD, TEM and UV-Vis spectroscopy.


Author(s):  
S. M. Yahya ◽  
Y. Abdulmumin ◽  
T. M. Abdulmumin ◽  
B. S. Sagagi ◽  
M. Murtala ◽  
...  

The green synthesis of silver nanoparticles proceeds through the reduction of silver ions by the phytochemicals as an initial step in the formation of the nanoparticles. The phytochemicals also involved in the subsequent steps by stabilization and directing the shape and size of nanoparticles. In this study, a mango pulp extract was used for the biosynthesis of silver nanoparticles (Ag-NPs) using “One pot biological method of synthesis” under ambient temperature. The biosynthesized silver nanoparticles were characterized through visual development of color,UV-VIS spectroscopy and Fourier transform infrared ray. The antimicrobial activities of the synthesized mango pulp Ag-NPs were determined using agar well diffusion method, MIC and MBC methods. The biosynthesized Ag-NPs showed a yellowish-brown color. Broad bell-shaped range bend was gotten from UV–Vis examination with different metabolites of MPAgNPs, this makes the plasmon band wide. Surface plasmon reverberation (SPR) of silver happens at 350 - 375 nm for the 7Nps at 2Mm concentration and 13Nps at 1Mm. The FTIR shows absorbance at 3335 m-1, 3324 m-1, 326 8 m-1, 3258 m-1, and 1640 m-1 were obtained for mango pulp extract-mediated (Ag-NPs), which indicated that proteins were the capping and stabilizing molecules in the biogenic synthesis of (Ag-NPs). Silver nanoparticles at various concentration of AgNO3 (2 mM, 1 mM, and 0.5 mM) have shown a profound effect by inhibiting the growth of E. Coli and S. Aureus with an inhibition zone of 12±0, 11.5±0.70, 11.33±1.5 and 12.5±2.12, 12±1.14, 12±4.24 using gentamycin as control (15.16±0.76. and 26.67±2.1) respectively, also MIC and MBC result of the MPAg-NPs extract have shown a –ve results confirming the potentiality of the extract against microbial forms. In conclusion, mango pulp silver nano particles demonstrated the feasibility of eco-friendly biogenic synthesis of Ag-NPs from a reliable, safe and available material (mango) that can be used for the green synthesis of Ag-NPs. And it also exhibits significant antimicrobial activity against gram –ve and gram +ve bacteria.


2014 ◽  
Vol 23 ◽  
pp. 27-35
Author(s):  
Jyothi Hiremath ◽  
Vandana Rathod ◽  
Shivaraj Ninganagouda ◽  
Dattu Singh ◽  
K. Prema

Nanotechnology is a field that is burgeoning day by day, making an impact in all spheres of human life. Biological methods of synthesis have paved way for the “greener synthesis” of nanoparticles and these have proven to be better methods due to slower kinetics, they offer better manipulation and control over crystal growth and their stabilization. In this context we have investigated extracellular biosynthesis of silver nanoparticles (AgNPs) using cell-free extract of Rhizopus spp.. Formation of AgNPs was indicated by the change in the colour of the cellfree extract from yellow to dark brown under static condition after 48 hrs of incubation. Characterization of AgNPs was carried out by UV-Vis Spectroscopy which gave sharp plasmon resonance peak at 429 nm corresponding to spherical shaped nanoparticles. Transmission electron microscopy (TEM) micrograph showed formation of well-dispersed AgNPs in the range of 25-50 nm. Scanning electron microscopy (SEM) showed the particles to be uniformly dispersed without agglomeration with smooth morphology. EDS showed the presence of elemental silver at 3kev. X-ray diffraction (XRD)-spectrum of the AgNPs exhibited 2θ¸ values corresponding to nanocrystal. These biosynthesized AgNPs were used to study their antimicrobial activity against Multi-drug resistant (MDR) E. coli strains, by Agar diffusion method. Zone of inhibition was measured. Synthesis of nanosized particles with antibacterial properties, which are called "nanoantibiotics", is of great interest in the development of new pharmaceutical products.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
M. Vanaja ◽  
K. Paulkumar ◽  
G. Gnanajobitha ◽  
S. Rajeshkumar ◽  
C. Malarkodi ◽  
...  

Green synthesis method of nanomaterials is rapidly growing in the nanotechnology field; it replaces the use of toxic chemicals and time consumption. In this present investigation we report the green synthesis of silver nanoparticles (AgNPs) by using the leaf extract of medicinally valuable plant Solanum trilobatum. The influence of physical and chemical parameters on the silver nanoparticle fabrication such as incubation time, silver nitrate concentration, pH, and temperature is also studied in this present context. The green synthesized silver nanoparticles were characterized by UV-vis spectroscopy, X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray (EDX), and transmission electron microscope (TEM). The SEM and TEM confirm the synthesis of spherical shape of nanocrystalline particles with the size range of 2–10 nm. FTIR reveals that the carboxyl and amine groups may be involved in the reduction of silver ions to silver nanoparticles. Antibacterial activity of synthesized silver nanoparticles was done by agar well diffusion method against different pathogenic bacteria. The green synthesized silver nanoparticles can be used in the field of medicine, due to their high antibacterial activity.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Zainal Abidin Ali ◽  
Rosiyah Yahya ◽  
Shamala Devi Sekaran ◽  
R. Puteh

Silver nanoparticles (AgNPs) were synthesized using apple extract as a reducing agent and aqueous silver nitrate as the precursor. The AgNPs formation was observed as a color change of the mixture from colorless to dark-brownish. The X-ray diffraction pattern confirmed the presence of only Ag crystallites, and the dynamic light scattering estimates the average sizes of the AgNPs to be 30.25 ± 5.26 nm. Furthermore, Fourier Transform Infrared as well as UV-vis spectroscopy identifies ethylene groups as the reducing agent and capping agent for the formation of the AgNPs. This green synthesis provides an economic, eco-friendly, and clean synthesis route to AgNPs. AgNPs in suspension showed activity against Gram-negative and Gram-positive bacteria with minimum bactericidal concentrations (MBCs) to be in the range from 125 μg/mL to 1000 μg/mL.


Sign in / Sign up

Export Citation Format

Share Document