scholarly journals Solid particles in the tropical lowest stratosphere

2007 ◽  
Vol 7 (3) ◽  
pp. 685-695 ◽  
Author(s):  
J. K. Nielsen ◽  
N. Larsen ◽  
F. Cairo ◽  
G. Di Donfrancesco ◽  
J. M. Rosen ◽  
...  

Abstract. We report in situ and remote observations proving occasional occurrence of solid particles in the tropical lowest stratosphere, 200 km from deep convective events. The particles were found during field campaigns in Southeast Brazil (49.03 W 22.36 S). They occur in the altitude range from 17.5 to 20.8 km, at temperatures up to at least 10 K above the expected frost point temperature. While stability of ice particles at these altitudes is unexpected from a theoretical point of view, it is argued that these observations are indications of tropospheric air masses penetrating into the stratosphere during convective overshoots. It is argued that the intrusion of tropospheric air must have carried a large amount of water with it, which effectively hydrated the lowest stratosphere, and consequently suppressed sublimation. This conclusion is further supported by a separate water vapor mixing ratio profile obtained at the same observation site.

2006 ◽  
Vol 6 (5) ◽  
pp. 9003-9032 ◽  
Author(s):  
J. K. Nielsen ◽  
N. Larsen ◽  
F. Cairo ◽  
G. Di Donfrancesco ◽  
J. M. Rosen ◽  
...  

Abstract. We report in situ and remote observations proving occasional occurrence of solid particles in the tropical lowest stratosphere, far away from deep convective events. The particles were found during field campaigns in Southeast Brazil (49.03 W 22.36 S). They occur in the altitude range from 17.5 to 20.8 km, at temperatures up to at least 10 K above the expected frost point temperature. While stability of ice particles at these altitudes is unexpected from a theoretical point of view, it is argued that these observations are indications of tropospheric air masses penetrating into the stratosphere during convective overshoots. It is concluded that the intrusion of tropospheric air must have carried a large amount of water with it, which effectively hydrated the lowest stratosphere, and consequently suppressed sublimation. This conclusion is further supported by a separate water vapor mixing ratio profile obtained at the same observation site.


2015 ◽  
Vol 8 (12) ◽  
pp. 13693-13727
Author(s):  
M. Ghysels ◽  
E. D. Riviere ◽  
S. Khaykin ◽  
C. Stoeffler ◽  
N. Amarouche ◽  
...  

Abstract. In this paper we compare water vapor mixing ratio measurements from two quasi-parallel flights of the Pico-SDLA H2O and FLASH-B hygrometers. The measurements were made on 10 February 2013 and 13 March 2012, respectively, in the tropics near Bauru, Sao Paulo St., Brazil during an intense convective period. Both flights were performed as part of a French scientific project, TRO-Pico, to study the impact of the deep-convection overshoot on the water budget. Only a few instruments that permit the frequent sounding of stratospheric water vapor can be flown within a small volume weather balloons. Technical difficulties preclude the accurate measurement of stratospheric water vapor with conventional in situ techniques. The instruments described here are simple and lightweight, which permits their low-cost deployment by non-specialists aboard a small weather balloon. We obtain mixing ratio retrievals which agree above the cold-point tropopause to within 1.9 and 0.5 % for the first and second flights, respectively. This level of agreement for measured stratospheric water mixing ratio is among the best ever reported in the literature. Because both instruments show similar profiles within their combined uncertainties, we conclude that the Pico-SDLA H2O and FLASH-B datasets are mutually consistent.


2017 ◽  
Vol 6 (1) ◽  
pp. 53
Author(s):  
Sebastià Salvà i Puig

This paper aims to explain, from a theoretical point of view, the behaviour of past participle agreement with the object in situ (PPAOIS) in Majorcan Catalan. It is possible in perfect telic dynamic events, but not in Kimian and Davidsonian states —except for certain telic dynamic constructions built with Kiparsky (1998) and Jaque’s  (2014) high pure stative verbs—, nor in some atelic dynamic constructions (like those ones with NP objects bounded by a D or Q), although it is perfectly grammatical with bare plurals and with bare mass nouns. In order for PPAOIS to be possible, it is proposed that a specific functional head (Asp, that is to say: Proc[uq][uϕ]), related to so-called inner aspect, must be present in the event structure. Asp establishes a double Agree relation with the object, in order to get its quantisation and [uϕ] features valued. It is also explored the possibility that the [q] feature of Asp be interpretable. If Asp is not present in the structure, the impossibility of PPAOIS follows. Moreover, PPAOIS will be only materialised if a pro object co-referent with the full NP object moves through a LowTop position —similar to the AgrO projection proposed by Kayne (1989).


2004 ◽  
Vol 22 (3) ◽  
pp. 705-715 ◽  
Author(s):  
B. Kärcher ◽  
W. Haag

Abstract. Factors controlling the distribution of relative humidity in the absence of clouds are examined, with special emphasis on relative humidity over ice (RHI) under upper tropospheric and lower stratospheric conditions. Variations of temperature are the key determinant for the distribution of RHI, followed by variations of the water vapor mixing ratio. Multiple humidity modes, generated by mixing of different air masses, may contribute to the overall distribution of RHI, in particular below ice saturation. The fraction of air that is supersaturated with respect to ice is mainly determined by the distribution of temperature. The nucleation of ice in cirrus clouds determines the highest relative humdity that can be measured outside of cirrus clouds. While vertical air motion and ice microphysics determine the slope of the distributions of RHI, as shown in a separate study companion (Haag et al., 2003), clouds are not required to explain the main features of the distributions of RHI below the ice nucleation threshold. Key words. Atmospheric composition and structure (pressure, density and temperature; troposphere – composition and chemistry; general or miscellaneous)


2010 ◽  
Vol 10 (7) ◽  
pp. 18063-18099
Author(s):  
M. von Hobe ◽  
J.-U. Grooß ◽  
G. Günther ◽  
P. Konopka ◽  
I. Gensch ◽  
...  

Abstract. Airborne in-situ observations of ClO in the tropics were made during the TROCCINOX (Aracatuba, Brasil, February 2005) and SCOUT-O3 (Darwin, Australia, November/December 2005) field campaigns. While during most flights significant amounts of ClO (≈10–20 parts per trillion, ppt) were present only in aged stratospheric air, instances of enhanced ClO mixing ratios of up to 40 ppt – significantly exceeding those expected from gas phase chemistry – were observed in air masses of a more tropospheric character. Most of these observations concur with low temperatures or with the presence of cirrus clouds (often both), suggesting that cirrus ice particles and/or liquid aerosol at low temperatures may promote significant heterogeneous chlorine activation in the tropical upper troposphere lower stratosphere (UTLS). In two case studies, particularly high levels of ClO observed were reproduced by chemistry simulations only under the assumption that significant denoxification had occurred in the observed air. At least for one of these flights, a significant denoxification is in contrast to the observed NO levels suggesting that the coupling of chlorine and nitrogen compounds in the tropical UTLS may not be completely understood.


2007 ◽  
Vol 135 (7) ◽  
pp. 2417-2442 ◽  
Author(s):  
Conrad L. Ziegler ◽  
Michael S. Buban ◽  
Erik N. Rasmussen

Abstract A new Lagrangian analysis technique is developed to assimilate in situ boundary layer measurements using multi-Doppler-derived wind fields, providing output fields of water vapor mixing ratio, potential temperature, and virtual potential temperature from which the lifting condensation level (LCL) and relative humidity (RH) fields are derived. The Lagrangian analysis employs a continuity principle to bidirectionally distribute observed values of conservative variables with the 3D, evolving boundary layer airflow, followed by temporal and spatial interpolation to an analysis grid. Cloud is inferred at any grid point whose height z > zLCL or equivalently where RH ≥ 100%. Lagrangian analysis of the cumulus field is placed in the context of gridded analyses of visible satellite imagery and photogrammetric cloud-base area analyses. Brief illustrative examples of boundary layer morphology derived with the Lagrangian analysis are presented based on data collected during the International H2O Project (IHOP): 1) a dryline on 22 May 2002; 2) a cold-frontal–dryline “triple point” intersection on 24 May 2002. The Lagrangian analysis preserves the sharp thermal gradients across the cold front and drylines and reveals the presence of undulations and plumes of water vapor mixing ratio and virtual potential temperature associated with deep penetrative updraft cells and convective roll circulations. Derived cloud fields are consistent with satellite-inferred cloud cover and cloud-base locations.


2014 ◽  
Vol 14 (19) ◽  
pp. 10803-10822 ◽  
Author(s):  
A. Kunz ◽  
N. Spelten ◽  
P. Konopka ◽  
R. Müller ◽  
R. M. Forbes ◽  
...  

Abstract. An evaluation of water vapor in the upper troposphere and lower stratosphere (UTLS) of the ERA-Interim, the global atmospheric reanalysis produced by the European Centre for Medium-Range Weather Forecasts (ECMWF), is presented. Water vapor measurements are derived from the Fast In situ Stratospheric Hygrometer (FISH) during a large set of airborne measurement campaigns from 2001 to 2011 in the tropics, midlatitudes and polar regions, covering isentropic layers from 300 to 400K (5–18km). The comparison shows around 87% of the reanalysis data are within a factor of 2 of the FISH water vapor measurements and around 30% have a nearly perfect agreement with an over- and underestimation lower than 10%. Nevertheless, strong over- and underestimations can occur both in the UT and LS, in particularly in the extratropical LS and in the tropical UT, where severe over- and underestimations up to 10 times can occur. The analysis data from the evolving ECMWF operational system is also evaluated, and the FISH measurements are divided into time periods representing different cycles of the Integrated Forecast System (IFS). The agreement with FISH improves over the time, in particular when comparing water vapor fields for time periods before 2004 and after 2010. It appears that influences of tropical tropospheric and extratropical UTLS processes, e.g., convective and quasi-isentropic exchange processes, are particularly challenging for the simulation of the UTLS water vapor distribution. Both the reanalysis and operational analysis data show the tendency of an overestimation of low water vapor mixing ratio (⪅10ppmv) in the LS and underestimation of high water vapor mixing ratio (⪆300ppmv) in the UT.


2011 ◽  
Vol 11 (1) ◽  
pp. 241-256 ◽  
Author(s):  
M. von Hobe ◽  
J.-U. Grooß ◽  
G. Günther ◽  
P. Konopka ◽  
I. Gensch ◽  
...  

Abstract. Airborne in-situ observations of ClO in the tropics were made during the TROCCINOX (Aracatuba, Brazil, February 2005) and SCOUT-O3 (Darwin, Australia, November/December 2005) field campaigns. While during most flights significant amounts of ClO (≈10–20 parts per trillion, ppt) were present only in aged stratospheric air, instances of enhanced ClO mixing ratios of up to 40 ppt – significantly exceeding those expected from gas phase chemistry – were observed in air masses of a more tropospheric character. Most of these observations are associated with low temperatures or with the presence of cirrus clouds (often both), suggesting that cirrus ice particles and/or liquid aerosol at low temperatures may promote significant heterogeneous chlorine activation in the tropical upper troposphere lower stratosphere (UTLS). In two case studies, particularly high levels of ClO observed were reproduced by chemistry simulations only under the assumption that significant denoxification had occurred in the observed air. However, to reproduce the ClO observations in these simulations, O3 mixing ratios higher than observed had to be assumed, and at least for one of these flights, a significant denoxification is in contrast to the observed NO levels, suggesting that the coupling of chlorine and nitrogen compounds in the tropical UTLS may not be completely understood.


2016 ◽  
Vol 9 (3) ◽  
pp. 1207-1219 ◽  
Author(s):  
Mélanie Ghysels ◽  
Emmanuel D. Riviere ◽  
Sergey Khaykin ◽  
Clara Stoeffler ◽  
Nadir Amarouche ◽  
...  

Abstract. In this paper we compare water vapor mixing ratio measurements from two quasi-parallel flights of the Pico-SDLA H2O and FLASH-B hygrometers. The measurements were made on 10 February 2013 and 13 March 2012, respectively, in the tropics near Bauru, São Paulo state, Brazil during an intense convective period. Both flights were performed as part of a French scientific project, TRO-Pico, to study the impact of the deep-convection overshoot on the water budget. Only a few instruments that permit the frequent sounding of stratospheric water vapor can be flown within small-volume weather balloons. Technical difficulties preclude the accurate measurement of stratospheric water vapor with conventional in situ techniques. The instruments described here are simple and lightweight, which permits their low-cost deployment by non-specialists aboard a small weather balloon. We obtain mixing ratio retrievals which agree above the cold-point tropopause to within 1.9 and 0.5 % for the first and second flights, respectively. This level of agreement for balloon-borne measured stratospheric water mixing ratio constitutes one of the best agreement reported in the literature. Because both instruments show similar profiles within their combined uncertainties, we conclude that the Pico-SDLA H2O and FLASH-B data sets are mutually consistent.


Author(s):  
Charles W. Allen

Irradiation effects studies employing TEMs as analytical tools have been conducted for almost as many years as materials people have done TEM, motivated largely by materials needs for nuclear reactor development. Such studies have focussed on the behavior both of nuclear fuels and of materials for other reactor components which are subjected to radiation-induced degradation. Especially in the 1950s and 60s, post-irradiation TEM analysis may have been coupled to in situ (in reactor or in pile) experiments (e.g., irradiation-induced creep experiments of austenitic stainless steels). Although necessary from a technological point of view, such experiments are difficult to instrument (measure strain dynamically, e.g.) and control (temperature, e.g.) and require months or even years to perform in a nuclear reactor or in a spallation neutron source. Consequently, methods were sought for simulation of neutroninduced radiation damage of materials, the simulations employing other forms of radiation; in the case of metals and alloys, high energy electrons and high energy ions.


Sign in / Sign up

Export Citation Format

Share Document