scholarly journals Evaluation of random forests and Prophet for daily streamflow forecasting

2018 ◽  
Vol 45 ◽  
pp. 201-208 ◽  
Author(s):  
Georgia A. Papacharalampous ◽  
Hristos Tyralis

Abstract. We assess the performance of random forests and Prophet in forecasting daily streamflow up to seven days ahead in a river in the US. Both the assessed forecasting methods use past streamflow observations, while random forests additionally use past precipitation information. For benchmarking purposes we also implement a naïve method based on the previous streamflow observation, as well as a multiple linear regression model utilizing the same information as random forests. Our aim is to illustrate important points about the forecasting methods when implemented for the examined problem. Therefore, the assessment is made in detail at a sufficient number of starting points and for several forecast horizons. The results suggest that random forests perform better in general terms, while Prophet outperforms the naïve method for forecast horizons longer than three days. Finally, random forests forecast the abrupt streamflow fluctuations more satisfactorily than the three other methods.

2021 ◽  
Vol 25 (6) ◽  
pp. 2997-3015
Author(s):  
Leo Triet Pham ◽  
Lifeng Luo ◽  
Andrew Finley

Abstract. In the past decades, data-driven machine-learning (ML) models have emerged as promising tools for short-term streamflow forecasting. Among other qualities, the popularity of ML models for such applications is due to their relative ease in implementation, less strict distributional assumption, and competitive computational and predictive performance. Despite the encouraging results, most applications of ML for streamflow forecasting have been limited to watersheds in which rainfall is the major source of runoff. In this study, we evaluate the potential of random forests (RFs), a popular ML method, to make streamflow forecasts at 1 d of lead time at 86 watersheds in the Pacific Northwest. These watersheds cover diverse climatic conditions and physiographic settings and exhibit varied contributions of rainfall and snowmelt to their streamflow. Watersheds are classified into three hydrologic regimes based on the timing of center-of-annual flow volume: rainfall-dominated, transient, and snowmelt-dominated. RF performance is benchmarked against naïve and multiple linear regression (MLR) models and evaluated using four criteria: coefficient of determination, root mean squared error, mean absolute error, and Kling–Gupta efficiency (KGE). Model evaluation scores suggest that the RF performs better in snowmelt-driven watersheds compared to rainfall-driven watersheds. The largest improvements in forecasts compared to benchmark models are found among rainfall-driven watersheds. RF performance deteriorates with increases in catchment slope and soil sandiness. We note disagreement between two popular measures of RF variable importance and recommend jointly considering these measures with the physical processes under study. These and other results presented provide new insights for effective application of RF-based streamflow forecasting.


Water ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 80
Author(s):  
Huseyin Cagan Kilinc ◽  
Bulent Haznedar

River flow modeling plays a crucial role in water resource management and ensuring its sustainability. Therefore, in recent years, in addition to the prediction of hydrological processes through modeling, applicable and highly reliable methods have also been used to analyze the sustainability of water resources. Artificial neural networks and deep learning-based hybrid models have been used by scientists in river flow predictions. Therefore, in this study, we propose a hybrid approach, integrating long-short-term memory (LSTM) networks and a genetic algorithm (GA) for streamflow forecasting. The performance of the hybrid model and the benchmark model was taken into account using daily flow data. For this purpose, the daily river flow time series of the Beyderesi-Kılayak flow measurement station (FMS) from September 2000 to June 2019 and the data from Yazıköy from December 2000 to June 2018 were used for flow measurements on the Euphrates River in Turkey. To validate the performance of the model, the first 80% of the data were used for training, and the remaining 20% were used for the testing of the two FMSs. Statistical methods such as linear regression was used during the comparison process to assess the proposed method’s performance and to demonstrate its superior predictive ability. The estimation results of the models were evaluated with RMSE, MAE, MAPE, STD and R2 statistical metrics. The comparison of daily streamflow predictions results revealed that the LSTM-GA model provided promising accuracy results and mainly presented higher performance than the benchmark model and the linear regression model.


2013 ◽  
Vol 4 (2) ◽  
pp. 661-675
Author(s):  
Haryadi Sarjono ◽  
Irwan Zulkifli

Article is forecasting comparative analysis of number of guess room occupancy at Karlita International Hotel, Tegal, Central Java using 11 forecasting methods: linear regression, moving average, weighted moving average, exponential smoothing, exponential smoothing with trend, naïve method, trend analysis, additive decomposition – CMA, additive decomposition – average all, multiplicative decomposition – CMA, multiplicative decomposition – average All. Article used 17 data from January 2012 to Mei 2013, and results after using those 11 methods were the smallest MAD is 101.69 and the smallest MSE is 15,163.95. From additive decomposition – average all method, data showed guess room occupancy forecast at Karlita International Hotel for June 2013 is 960 guess.


2020 ◽  
Vol 16 (4) ◽  
pp. 543-553
Author(s):  
Luciana Y. Tomita ◽  
Andréia C. da Costa ◽  
Solange Andreoni ◽  
Luiza K.M. Oyafuso ◽  
Vânia D’Almeida ◽  
...  

Background: Folic acid fortification program has been established to prevent tube defects. However, concern has been raised among patients using anti-folate drug, i.e. psoriatic patients, a common, chronic, autoimmune inflammatory skin disease associated with obesity and smoking. Objective: To investigate dietary and circulating folate, vitamin B12 (B12) and homocysteine (hcy) in psoriatic subjects exposed to the national mandatory folic acid fortification program. Methods: Cross-sectional study using the Food Frequency Questionnaire, plasma folate, B12, hcy and psoriasis severity using the Psoriasis Area and Severity Index score. Median, interquartile ranges (IQRs) and linear regression models were conducted to investigate factors associated with plasma folate, B12 and hcy. Results: 82 (73%) mild psoriasis, 18 (16%) moderate and 12 (11%) severe psoriasis. 58% female, 61% non-white, 31% former smokers, and 20% current smokers. Median (IQRs) were 51 (40, 60) years. Only 32% reached the Estimated Average Requirement of folate intake. Folate and B12 deficiencies were observed in 9% and 6% of the blood sample respectively, but hyperhomocysteinaemia in 21%. Severity of psoriasis was negatively correlated with folate and B12 concentrations. In a multiple linear regression model, folate intake contributed positively to 14% of serum folate, and negative predictors were psoriasis severity, smoking habits and saturated fatty acid explaining 29% of circulating folate. Conclusion: Only one third reached dietary intake of folate, but deficiencies of folate and B12 were low. Psoriasis severity was negatively correlated with circulating folate and B12. Stopping smoking and a folate rich diet may be important targets for managing psoriasis.


Author(s):  
Pundra Chandra Shaker Reddy ◽  
Alladi Sureshbabu

Aims & Background: India is a country which has exemplary climate circumstances comprising of different seasons and topographical conditions like high temperatures, cold atmosphere, and drought, heavy rainfall seasonal wise. These utmost varieties in climate make us exact weather prediction is a challenging task. Majority people of the country depend on agriculture. Farmers require climate information to decide the planting. Weather prediction turns into an orientation in farming sector to deciding the start of the planting season and furthermore quality and amount of their harvesting. One of the variables are influencing agriculture is rainfall. Objectives & Methods: The main goal of this project is early and proper rainfall forecasting, that helpful to people who live in regions which are inclined natural calamities such as floods and it helps agriculturists for decision making in their crop and water management using big data analytics which produces high in terms of profit and production for farmers. In this project, we proposed an advanced automated framework called Enhanced Multiple Linear Regression Model (EMLRM) with MapReduce algorithm and Hadoop file system. We used climate data from IMD (Indian Metrological Department, Hyderabad) in 1901 to 2002 period. Results: Our experimental outcomes demonstrate that the proposed model forecasting the rainfall with better accuracy compared with other existing models. Conclusion: The results of the analysis will help the farmers to adopt effective modeling approach by anticipating long-term seasonal rainfall.


Author(s):  
Willem M.P. Heijboer ◽  
Mathijs A.M. Suijkerbuijk ◽  
Belle L. van Meer ◽  
Eric W.P. Bakker ◽  
Duncan E. Meuffels

AbstractMultiple studies found hamstring tendon (HT) autograft diameter to be a risk factor for anterior cruciate ligament (ACL) reconstruction failure. This study aimed to determine which preoperative measurements are associated with HT autograft diameter in ACL reconstruction by directly comparing patient characteristics and cross-sectional area (CSA) measurement of the semitendinosus and gracilis tendon on magnetic resonance imaging (MRI). Fifty-three patients with a primary ACL reconstruction with a four-stranded HT autograft were included in this study. Preoperatively we recorded length, weight, thigh circumference, gender, age, preinjury Tegner activity score, and CSA of the semitendinosus and gracilis tendon on MRI. Total CSA on MRI, weight, height, gender, and thigh circumference were all significantly correlated with HT autograft diameter (p < 0.05). A multiple linear regression model with CSA measurement of the HTs on MRI, weight, and height showed the most explained variance of HT autograft diameter (adjusted R 2 = 44%). A regression equation was derived for an estimation of the expected intraoperative HT autograft diameter: 1.2508 + 0.0400 × total CSA (mm2) + 0.0100 × weight (kg) + 0.0296 × length (cm). The Bland and Altman analysis indicated a 95% limit of agreement of ± 1.14 mm and an error correlation of r = 0.47. Smaller CSA of the semitendinosus and gracilis tendon on MRI, shorter stature, lower weight, smaller thigh circumference, and female gender are associated with a smaller four-stranded HT autograft diameter in ACL reconstruction. Multiple linear regression analysis indicated that the combination of MRI CSA measurement, weight, and height is the strongest predictor.


Author(s):  
Olivia Fösleitner ◽  
Véronique Schwehr ◽  
Tim Godel ◽  
Fabian Preisner ◽  
Philipp Bäumer ◽  
...  

Abstract Purpose To assess the correlation of peripheral nerve and skeletal muscle magnetization transfer ratio (MTR) with demographic variables. Methods In this study 59 healthy adults evenly distributed across 6 decades (mean age 50.5 years ±17.1, 29 women) underwent magnetization transfer imaging and high-resolution T2-weighted imaging of the sciatic nerve at 3 T. Mean sciatic nerve MTR as well as MTR of biceps femoris and vastus lateralis muscles were calculated based on manual segmentation on six representative slices. Correlations of MTR with age, body height, body weight, and body mass index (BMI) were expressed by Pearson coefficients. Best predictors for nerve and muscle MTR were determined using a multiple linear regression model with forward variable selection and fivefold cross-validation. Results Sciatic nerve MTR showed significant negative correlations with age (r = −0.47, p < 0.001), BMI (r = −0.44, p < 0.001), and body weight (r = −0.36, p = 0.006) but not with body height (p = 0.55). The multiple linear regression model determined age and BMI as best predictors for nerve MTR (R2 = 0.40). The MTR values were different between nerve and muscle tissue (p < 0.0001), but similar between muscles. Muscle MTR was associated with BMI (r = −0.46, p < 0.001 and r = −0.40, p = 0.002) and body weight (r = −0.36, p = 0.005 and r = −0.28, p = 0.035). The BMI was selected as best predictor for mean muscle MTR in the multiple linear regression model (R2 = 0.26). Conclusion Peripheral nerve MTR decreases with higher age and BMI. Studies that assess peripheral nerve MTR should consider age and BMI effects. Skeletal muscle MTR is primarily associated with BMI but overall less dependent on demographic variables.


Sign in / Sign up

Export Citation Format

Share Document