scholarly journals All-sky interferometric meteor radar meteoroid speed estimation using the Fresnel transform

2007 ◽  
Vol 25 (2) ◽  
pp. 385-398 ◽  
Author(s):  
D. A. Holdsworth ◽  
W. G. Elford ◽  
R. A. Vincent ◽  
I. M. Reid ◽  
D. J. Murphy ◽  
...  

Abstract. Fresnel transform meteor speed estimation is investigated. A spectral based technique is developed allowing the transform to be applied at low temporal sampling rates. Simulations are used to compare meteoroid speeds determined using the Fresnel transform and alternative techniques, confirming that the Fresnel transform produces the most accurate meteoroid speed estimates for high effective pulse repetition frequencies (PRFs). The Fresnel transform is applied to high effective PRF data collected during Leonid meteor showers, producing speed estimates in good agreement with the theoretical pre-atmospheric speed of the 71 kms−1. Further simulations for the standard low effective PRF sampling parameters used for Buckland Park meteor radar (BPMR) observations suggests that the Fresnel transform can successfully estimate meteor speeds up to 80 kms−1. Fresnel transform speed estimation is applied using the BPMR, producing speed distributions similar to those obtained in previous studies. The technique is also applied to data collected using the BPMR sampling parameters during Southern delta-Aquarid and Geminid meteor showers, producing speeds in very good agreement with the theoretical pre-atmospheric speeds of these showers (41 kms−1 and 35 kms−1, respectively). However, application of the Fresnel transform to high speed showers suggests that the practical upper limit for accurate speed estimation using the BPMR sampling parameters is around 50 kms−1. This limit allows speed accurate estimates to be made for about 70% of known meteor showers, and around 70% of sporadic echoes.

2008 ◽  
Vol 36 (3) ◽  
pp. 211-226 ◽  
Author(s):  
F. Liu ◽  
M. P. F. Sutcliffe ◽  
W. R. Graham

Abstract In an effort to understand the dynamic hub forces on road vehicles, an advanced free-rolling tire-model is being developed in which the tread blocks and tire belt are modeled separately. This paper presents the interim results for the tread block modeling. The finite element code ABAQUS/Explicit is used to predict the contact forces on the tread blocks based on a linear viscoelastic material model. Special attention is paid to investigating the forces on the tread blocks during the impact and release motions. A pressure and slip-rate-dependent frictional law is applied in the analysis. A simplified numerical model is also proposed where the tread blocks are discretized into linear viscoelastic spring elements. The results from both models are validated via experiments in a high-speed rolling test rig and found to be in good agreement.


2017 ◽  
Vol 2 (4) ◽  
pp. 25
Author(s):  
L. A. Montoya ◽  
E. E. Rodríguez ◽  
H. J. Zúñiga ◽  
I. Mejía

Rotating systems components such as rotors, have dynamic characteristics that are of great importance to understand because they may cause failure of turbomachinery. Therefore, it is required to study a dynamic model to predict some vibration characteristics, in this case, the natural frequencies and mode shapes (both of free vibration) of a centrifugal compressor shaft. The peculiarity of the dynamic model proposed is that using frequency and displacements values obtained experimentally, it is possible to calculate the mass and stiffness distribution of the shaft, and then use these values to estimate the theoretical modal parameters. The natural frequencies and mode shapes of the shaft were obtained with experimental modal analysis by using the impact test. The results predicted by the model are in good agreement with the experimental test. The model is also flexible with other geometries and has a great time and computing performance, which can be evaluated with respect to other commercial software in the future.


1982 ◽  
Vol 104 (4) ◽  
pp. 750-757 ◽  
Author(s):  
C. T. Avedisian

A study of high-pressure bubble growth within liquid droplets heated to their limits of superheat is reported. Droplets of an organic liquid (n-octane) were heated in an immiscible nonvolatile field liquid (glycerine) until they began to boil. High-speed cine photography was used for recording the qualitative aspects of boiling intensity and for obtaining some basic bubble growth data which have not been previously reported. The intensity of droplet boiling was found to be strongly dependent on ambient pressure. At atmospheric pressure the droplets boiled in a comparatively violent manner. At higher pressures photographic evidence revealed a two-phase droplet configuration consisting of an expanding vapor bubble beneath which was suspended a pool of the vaporizing liquid. A qualitative theory for growth of the two-phase droplet was based on assuming that heat for vaporizing the volatile liquid was transferred across a thin thermal boundary layer surrounding the vapor bubble. Measured droplet radii were found to be in relatively good agreement with predicted radii.


1978 ◽  
Vol 22 (03) ◽  
pp. 140-169
Author(s):  
Milton Martin

A theoretical method is derived for predicting the linearized response characteristics of constant deadrise high-speed planing boats in head and following waves. Comparisons of the theoretical predictions of the pitch and heave response amplitude operators and phase angles with existing experimental data show reasonably good agreement for a wide variety of conditions of interest. It appears that nonlinear effects are more severe at a speed to length ratio of 6 than of, say, 4 or less, principally because of the reduction of the damping ratio of the boat with increasing speed, and the consequent increase in motions in the vicinity of the resonant encounter frequency. However, it is concluded that the linear theory can provide a simple and fast means of determining the effect of various parameters such as trim angle, deadrise, loading, and speed on the damping, natural frequency, and linearized response in waves, and that this can furnish valuable insight into the actual boat dynamics, even though the accurate predictions of large motions and peak accelerations would require a nonlinear analysis.


1971 ◽  
Vol 8 (03) ◽  
pp. 327-333
Author(s):  
R. H. Salzman

This paper presents a semi-graphical approach for finding the first critical speed of a stepped shaft with finite bearing stiffness. The method is particularly applicable to high-speed turbine rotors with journal bearings. Using Rayleigh's Method and the exact solution for whirling of a uniform shaft with variable support stiffness, estimates of the lowest critical speed are easily obtained which are useful in the design stage. First critical speeds determined by this method show good agreement with values computed by the Prohl Method for the normal range of bearing stiffness. A criterion is also established for determining if the criticals are "bearing critical speeds" or "bending critical speeds," which is of importance in design. Discusser E. G. Baker


2014 ◽  
Vol 641-642 ◽  
pp. 179-182 ◽  
Author(s):  
Jin Liang Chen

Through grey estimation of the parameters of logistic equation, a grey logistic forecasting model is established. The effective irrigation area in Liaoning Province was simulated by the model. The simulation results had good agreement with the available data, with a correlation of 0.95. The effective irrigation area was predicted to be 1.583 million hectares in 2018, very close to the predicted upper limit of 1.588 million hectares. Thus, there is little potential for the development of the effective irrigation area, rendering the structural adjustment of agricultural resources very necessary.


1981 ◽  
Vol 103 (2) ◽  
pp. 295-301 ◽  
Author(s):  
J. J. Coy ◽  
E. V. Zaretsky

Elastohydrodynamic film thickness was measured for a 20-mm ball bearing using the capacitance technique. The bearing was thrust loaded to 90, 448, and 778 N (20, 100, and 175 lb). The corresponding maximum stresses on the inner race were 1.28, 2.09, and 2.45 GPa (185,000, 303,000, and 356,000 psi). Test speeds ranged from 400 to 14,000 rpm. Film thickness measurements were taken with four different lubricants: (a) synthetic paraffinic, (b) synthetic paraffinic with additives, (c) neopentylpolyol (tetra) ester meeting MIL-L-23699A specifications, and (d) synthetic cycloaliphatic hydrocarbon traction fluid. The test bearing was mist lubricated. Test temperatures were 300, 338, and 393 K. The measured results were compared to theoretical predictions using the formulae of Grubin, Archard and Cowking, Dowson and Higginson, and Hamrock and Dowson. There was good agreement with theory at low dimensionless speed, but the film was much smaller than theory predicts at higher speeds. This was due to kinematic starvation and inlet shear heating effects. Comparisons with Chiu’s theory on starvation and Cheng’s theory on inlet shear heating were made.


2001 ◽  
Vol 124 (2) ◽  
pp. 398-405 ◽  
Author(s):  
S. Yoshimoto ◽  
S. Oshima ◽  
S. Danbara ◽  
T. Shitara

In this paper, the stability of water-lubricated, hydrostatic, conical bearings with spiral grooves for high-speed spindles is investigated theoretically and experimentally. In these bearing types, pressurized water is first fed to the inside of the rotating shaft and then introduced into spiral grooves through feeding holes located at one end of each spiral groove. Therefore, water pressure is increased due to the effect of the centrifugal force at the outlets of the feeding holes, which results from shaft rotation. In addition, water pressure is also increased by the viscous pumping effect of the spiral grooves. The stability of the proposed bearing is theoretically predicted using the perturbation method, and calculated results are compared with experimental results. It was consequently found that the proposed bearing is very stable at high speeds and theoretical predictions show good agreement with experimental data.


2020 ◽  
Vol 37 (4) ◽  
pp. 687-703 ◽  
Author(s):  
Michael Schlundt ◽  
J. Thomas Farrar ◽  
Sebastien P. Bigorre ◽  
Albert J. Plueddemann ◽  
Robert A. Weller

AbstractThe comparison of equivalent neutral winds obtained from (i) four WHOI buoys in the subtropics and (ii) scatterometer estimates at those locations reveals a root-mean-square (RMS) difference of 0.56–0.76 m s−1. To investigate this RMS difference, different buoy wind error sources were examined. These buoys are particularly well suited to examine two important sources of buoy wind errors because 1) redundant anemometers and a comparison with numerical flow simulations allow us to quantitatively assess flow distortion errors, and 2) 1-min sampling at the buoys allows us to examine the sensitivity of buoy temporal sampling/averaging in the buoy–scatterometer comparisons. The interanemometer difference varies as a function of wind direction relative to the buoy wind vane and is consistent with the effects of flow distortion expected based on numerical flow simulations. Comparison between the anemometers and scatterometer winds supports the interpretation that the interanemometer disagreement, which can be up to 5% of the wind speed, is due to flow distortion. These insights motivate an empirical correction to the individual anemometer records and subsequent comparison with scatterometer estimates show good agreement.


Sign in / Sign up

Export Citation Format

Share Document