scholarly journals Reconstructing geographical boundary conditions for palaeoclimate modelling during the Cenozoic

2016 ◽  
Vol 12 (8) ◽  
pp. 1635-1644 ◽  
Author(s):  
Michiel Baatsen ◽  
Douwe J. J. van Hinsbergen ◽  
Anna S. von der Heydt ◽  
Henk A. Dijkstra ◽  
Appy Sluijs ◽  
...  

Abstract. Studies on the palaeoclimate and palaeoceanography using numerical model simulations may be considerably dependent on the implemented geographical reconstruction. Because building the palaeogeographic datasets for these models is often a time-consuming and elaborate exercise, palaeoclimate models frequently use reconstructions in which the latest state-of-the-art plate tectonic reconstructions, palaeotopography and -bathymetry, or vegetation have not yet been incorporated. In this paper, we therefore provide a new method to efficiently generate a global geographical reconstruction for the middle-late Eocene. The generalised procedure is also reusable to create reconstructions for other time slices within the Cenozoic, suitable for palaeoclimate modelling. We use a plate-tectonic model to make global masks containing the distribution of land, continental shelves, shallow basins and deep ocean. The use of depth-age relationships for oceanic crust together with adjusted present-day topography gives a first estimate of the global geography at a chosen time frame. This estimate subsequently needs manual editing of areas where existing geological data indicate that the altimetry has changed significantly over time. Certain generic changes (e.g. lowering mountain ranges) can be made relatively easily by defining a set of masks while other features may require a more specific treatment. Since the discussion regarding many of these regions is still ongoing, it is crucial to make it easy for changes to be incorporated without having to redo the entire procedure. In this manner, a complete reconstruction can be made that suffices as a boundary condition for numerical models with a limited effort. This facilitates the interaction between experts in geology and palaeoclimate modelling, keeping reconstructions up to date and improving the consistency between different studies. Moreover, it facilitates model inter-comparison studies and sensitivity tests regarding certain geographical features as newly generated boundary conditions can more easily be incorporated in different model simulations. The workflow is presented covering a middle-late Eocene reconstruction (38 Ma), using a MatLab script and a complete set of source files that are provided in the supplementary material.

2015 ◽  
Vol 11 (5) ◽  
pp. 4917-4942 ◽  
Author(s):  
M. Baatsen ◽  
D. J. J. van Hinsbergen ◽  
A. S. von der Heydt ◽  
H. A. Dijkstra ◽  
A. Sluijs ◽  
...  

Abstract. Studies on the palaeoclimate and palaeoceanography using numerical model simulations may be considerably dependent on the implemented geographical reconstruction. Because building the palaeogeographic datasets for these models is often a time-consuming and elaborate exercise, palaeoclimate models frequently use reconstructions in which the latest state-of-the-art of plate tectonic reconstructions, palaeotopography and -bathymetry, or vegetation have not yet been incorporated. In this paper, we therefore provide a new method to efficiently generate global geographical reconstructions that are suitable for palaeoclimate modelling. We use a plate-tectonic model to make global masks containing the distribution of land, continental shelves, shallow basins and deep ocean. The use of depth–age relationships for oceanic crust together with adjusted present-day topography gives a first estimate of the global geography at a chosen time frame. This estimate subsequently needs manual editing of areas where existing geological data indicates that the altimetry has changed significantly over time. Certain generic changes (e.g. lowering mountain ranges) can be made relatively easily by defining a set of masks while other features may require a more specific treatment. Since the discussion regarding many of these regions is still ongoing, it is crucial to make it easy for changes to be incorporated without having to redo the entire procedure. In this manner, a complete reconstruction can be made that suffices as a boundary condition for numerical models with a limited effort. This facilitates the interaction between experts in geology and palaeoclimate modelling, keeping the reconstructions up to date and improving the consistency between different studies. Moreover, it facilitates model inter-comparison studies and sensitivity tests regarding certain geographical features as newly generated boundary conditions can be easily incorporated in different model simulations. An example is presented, covering a late Eocene reconstruction (38 Ma), a MatLab script used to perform the procedure is provided in the Supplement.


1984 ◽  
Vol 1 (19) ◽  
pp. 55
Author(s):  
James R. Houston ◽  
H. Lee Butler

Tsunamis are long-period water waves usually generated by earthquakes. They occur predominantly in the Pacific Ocean and can produce massive inundation and destruction. The last major tsunami that seriously impacted the United States was the 1964 Alaskan tsunami. This tsunami was generated in Alaska and caused damage in Alaska, the Hawaiian Islands, and on the west coast of the continental United States. It is the most documented of all tsunamis and the only tsunami for which there is information on the ground motion that generated the tsunami. Numerical models have been used to simulate tsunami generation and propagation. A numerical simulation of the 1964 Alaskan tsunami that included deep ocean propagation was performed by Hwang et al. (1) and a comparison was made with a deep water gage at Wake Island. Houston (2) performed a numerical simulation of this tsunami including both deep ocean and nearshore propagation in the Hawaiian Islands and presented comparisons with tide gage recordings. Although Houston (2) demonstrated the ability of numerical models to propagate tsunamis from source regions to distant shorelines, the Hawaiian Islands considered in his simulation have a very short continental shelf and the conclusions of his study might not be applicable to typical continental areas that have significantly longer continental shelves.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1110
Author(s):  
Wei-Qin Liu ◽  
Luo-Nan Xiong ◽  
Guo-Wei Zhang ◽  
Meng Yang ◽  
Wei-Guo Wu ◽  
...  

The numerical hydroelastic method is used to study the structural response of a hexagon enclosed platform (HEP) of flexible module rigid connector (FMRC) structure that can provide life accommodation, ship berthing and marine supply for ships sailing in the deep ocean. Six trapezoidal floating structures constitute the HEP structure so that it is a symmetrical very large floating structure (VLFS). The HEP has the characteristics of large area and small depth, so its hydroelastic response is significant. Therefore, this paper studies the structural responses of a hexagon enclosed platform of FMRC structure in waves by means of a 3D potential-flow hydroelastic method based on modal superposition. Numerical models, including the hydrodynamic model, wet surface model and finite element method (FEM) model, are established, a rigid connection is simulated by many-point-contraction (MPC) and the number of wave cases is determined. The load and structural response of HEP are obtained and analyzed in all wave cases, and frequency-domain hydroelastic calculation and time-domain hydroelastic calculation are carried out. After obtaining a number of response amplitude operators (RAOs) for stress and time-domain stress histories, the mechanism of the HEP structure is compared and analyzed. This study is used to guide engineering design for enclosed-type ocean platforms.


2010 ◽  
Vol 37 (4) ◽  
pp. 600-610 ◽  
Author(s):  
Vladan Kuzmanovic ◽  
Ljubodrag Savic ◽  
John Stefanakos

This paper presents two-dimensional (2D) and three-dimensional (3D) numerical models for unsteady phased thermal analysis of RCC dams. The time evolution of a thermal field has been modeled using the actual dam shape, RCC technology and the adequate description of material properties. Model calibration and verification has been done based on the field investigations of the Platanovryssi dam, the highest RCC dam in Europe. The results of a long-term thermal analysis, with actual initial and boundary conditions, have shown a good agreement with the observed temperatures. The influence of relevant parameters on the thermal field of RCC dams has been analyzed. It is concluded that the 2D model is appropriate for the thermal phased analysis, and that the boundary conditions and the mixture properties are the most influential on the RCC dam thermal behavior.


1980 ◽  
Vol 17 (1) ◽  
pp. 60-71 ◽  
Author(s):  
Jean-Claude Mareschal ◽  
Gordon F. West

A tectonic model that attempts to explain common features of Archean geology is investigated. The model supposes the accumulation, by volcanic eruptions, of a thick basaltic pile on a granitoid crust. The thermal blanketing effect of this lava raises the temperature of the granitic crust and eventually softens it enough that gravitational slumping and downfolding of the lava follows.Numerical models of the thermal and mechanical evolution of a granitoid crust covered with a thick lava sequence indicate that such an evolution is possible when reasonable assumptions are made about the temperature dependence of the viscosity in crustal rocks. These models show the lava sinking in relatively narrow regions while wider granite diapirs appear in between. The convection produces strong horizontal temperature gradients that may cause lateral changes in metamoprhic facies. A one order of magnitude drop in accumulated strain occurs between the granite–basalt interface and the center of the granite diaper at a depth of 10–15 km.


2010 ◽  
Vol 7 (1) ◽  
pp. 177-205
Author(s):  
K. Fennel

Abstract. Continental shelves play a key role in the cycling of nitrogen and carbon. Here the physical transport and biogeochemical transformation processes affecting the fluxes into and out of continental shelf systems are reviewed, and their role in the global cycling of both elements is discussed. Uncertainties in observation-based estimates of nitrogen and carbon fluxes mostly result from uncertainties in the shelf-open ocean exchange of organic and inorganic matter, which is hard to quantify based on observations alone, but can be inferred from biogeochemical models. Model-based nitrogen and carbon budgets are presented for the Northwestern North Atlantic continental shelf. Results indicate that shelves are an important sink for fixed nitrogen and a source of alkalinity, but are not much more efficient in exporting organic carbon to the deep ocean than the adjacent open ocean for the shelf region considered.


2021 ◽  
Author(s):  
Anthony Jourdon ◽  
Charlie Kergaravat ◽  
Guillaume Duclaux ◽  
Caroline Huguen

Abstract. Transform margins represent ~30 % of the non-convergent margins worldwide. Their formation and evolution have long been addressed through kinematic models that do not account for the mechanical behaviour of the lithosphere. In this study, we use high resolution 3D numerical thermo-mechanical modelling to simulate and investigate the evolution of the intra-continental strain localization under oblique extension. The obliquity is set through velocity boundary conditions that range from 15° (high obliquity) to 75° (low obliquity) every 15° for strong and weak lower continental crust rheologies. Numerical models show that the formation of localized strike-slip shear zones leading to transform continental margins always follows a thinning phase during which the lithosphere is thermally and mechanically weakened. For low (75°) to intermediate (45°) obliquity cases, the strike-slip faults are not parallel to the extension direction but form an angle of 20° to 40° with the plates' motion while for higher obliquities (30° to 15°) the strike-slip faults develop parallel to the extension direction. Numerical models also show that during the thinning of the lithosphere, the stress and strain re-orient while boundary conditions are kept constant. This evolution, due to the weakening of the lithosphere, leads to a strain localization process in three major phases: (1) strain initiates in a rigid plate where structures are sub-perpendicular to the extension direction; (2) distributed deformation with local stress field variations and formation of transtensional and strike-slip structures; (3) formation of highly localized plates boundaries stopping the intra-continental deformation. Our results call for a thorough re-evaluation of the kinematic approach to studying transform margins.


Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1432
Author(s):  
Lev Zakhvatkin ◽  
Alex Schechter ◽  
Eilam Buri ◽  
Idit Avrahami

During aerial missions of fuel-cell (FC) powered drones, the option of FC edge cooling may improve FC performance and durability. Here we describe an edge cooling approach for fixed-wing FC-powered drones by removing FC heat using the ambient air during flight. A set of experiments in a wind tunnel and numerical simulations were performed to examine the efficiency of FC edge cooling at various flight altitudes and cruise speeds. The experiments were used to validate the numerical model and prove the feasibility of the proposed method. The first simulation duplicated the geometry of the experimental setup and boundary conditions. The calculated temperatures of the stack were in good agreement with those of the experiments (within ±2 °C error). After validation, numerical models of a drone’s fuselage in ambient air with different radiator locations and at different flight speeds (10–30 m/s) and altitudes (up to 5 km) were examined. It was concluded that onboard FC edge cooling by ambient air may be applicable for velocities higher than 10 m/s. Despite the low pressure, density, and Cp of air at high altitudes, heat removal is significantly increased with altitude at all power and velocity conditions due to lower air temperature.


2014 ◽  
Vol 10 (6) ◽  
pp. 2237-2252 ◽  
Author(s):  
I. Hessler ◽  
S. P. Harrison ◽  
M. Kucera ◽  
C. Waelbroeck ◽  
M.-T. Chen ◽  
...  

Abstract. We present and examine a multi-sensor global compilation of mid-Holocene (MH) sea surface temperatures (SST), based on Mg/Ca and alkenone palaeothermometry and reconstructions obtained using planktonic foraminifera and organic-walled dinoflagellate cyst census counts. We assess the uncertainties originating from using different methodologies and evaluate the potential of MH SST reconstructions as a benchmark for climate-model simulations. The comparison between different analytical approaches (time frame, baseline climate) shows the choice of time window for the MH has a negligible effect on the reconstructed SST pattern, but the choice of baseline climate affects both the magnitude and spatial pattern of the reconstructed SSTs. Comparison of the SST reconstructions made using different sensors shows significant discrepancies at a regional scale, with uncertainties often exceeding the reconstructed SST anomaly. Apparent patterns in SST may largely be a reflection of the use of different sensors in different regions. Overall, the uncertainties associated with the SST reconstructions are generally larger than the MH anomalies. Thus, the SST data currently available cannot serve as a target for benchmarking model simulations. Further evaluations of potential subsurface and/or seasonal artifacts that may contribute to obscure the MH SST reconstructions are urgently needed to provide reliable benchmarks for model evaluations.


Sign in / Sign up

Export Citation Format

Share Document