Development of magnetic nano-geocomposite for groundwater and leachate treatment: A Landfill Management Perspective

Author(s):  
Nivedita Pradhan ◽  
Manish Kumar

<ul>Landfill leachate, a highly contaminated percolating effluent can cause a considerable threat to human as well as environmental health. We developed a novel nano composite using the polymer encapsulated magnetic geopolymer for efficient removal of multi contaminants (As, Zn, Fe, Co, Cu, Ni, Pb, F, NO 3 - , and PO 4 3- ) present in the landfill leachate and groundwater of the Pirana solid waste dumping site, Ahmedabad, Gujarat. A series of batch and column sorption experiments were carried out to find the best-operating conditions for optimum removal efficiency. Results revealed that in the range of 50-60% of multi-contaminant removal is possible using the newly developed adsorbent which has high surface area as well as mixed functional groups for the removal of both cationic (Zn, Fe, Co, Cu, Ni, and Pb) and anionic (F, NO 3 - , and PO 4 3- ) contaminants present in the leachate. Batch study shows that both physical and chemical sorption are equally operational and multilayer removal following the Freundlich isotherms predominantly. The batch test mimics the equilibrium condition only. The study recommends column study under different follow conditions using leachate and groundwater, followed by a regeneration study for its reusability and development of the field implementation schemes. The future research is required to address the decontamination of emerging contaminants like pharmaceuticals, pesticides and fertilizers, industrial additives and antibacterial agents.</ul>

Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2609
Author(s):  
Abniel Machín ◽  
Kenneth Fontánez ◽  
Juan C. Arango ◽  
Dayna Ortiz ◽  
Jimmy De León ◽  
...  

At present, the world is at the peak of production of traditional fossil fuels. Much of the resources that humanity has been consuming (oil, coal, and natural gas) are coming to an end. The human being faces a future that must necessarily go through a paradigm shift, which includes a progressive movement towards increasingly less polluting and energetically viable resources. In this sense, nanotechnology has a transcendental role in this change. For decades, new materials capable of being used in energy processes have been synthesized, which undoubtedly will be the cornerstone of the future development of the planet. In this review, we report on the current progress in the synthesis and use of one-dimensional (1D) nanostructured materials (specifically nanowires, nanofibers, nanotubes, and nanorods), with compositions based on oxides, nitrides, or metals, for applications related to energy. Due to its extraordinary surface–volume relationship, tunable thermal and transport properties, and its high surface area, these 1D nanostructures have become fundamental elements for the development of energy processes. The most relevant 1D nanomaterials, their different synthesis procedures, and useful methods for assembling 1D nanostructures in functional devices will be presented. Applications in relevant topics such as optoelectronic and photochemical devices, hydrogen production, or energy storage, among others, will be discussed. The present review concludes with a forecast on the directions towards which future research could be directed on this class of nanostructured materials.


Author(s):  
Amin Mojiri ◽  
Siti Fatihah Binti Ramli ◽  
Wan Izatul Saadiah Binti Wan Kamar

Leachate is created while water penetrates through the waste in a landfill, carrying some forms of pollutants. The goal of this chapter is the introduction to leachate treatment. Biological, physical, and chemical treatments of leachate are the most common methods. The biological techniques in leachate treatment are studied. The physical-chemical ways for landfill leachate treatment like chemical precipitation, chemical oxidation, coagulation–flocculation, membrane filtration, ion exchange, adsorption and electrochemical treatment are studied. The landfill leachate properties, technical applicability and constraints, effluent discharge alternatives, cost-effectiveness, regulatory requirements and environmental impact are important factors for selection of the most suitable treatment technique for landfill leachate treatment.


Processes ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 384 ◽  
Author(s):  
Tabish Nawaz ◽  
Ashiqur Rahman ◽  
Shanglei Pan ◽  
Kyleigh Dixon ◽  
Burgandy Petri ◽  
...  

Solid waste generation has been projected to increase worldwide. Presently, the most applied methodology to dispose of solid waste is landfilling. However, these landfill sites, over time release a significant quantity of leachate, which can pose serious environmental issues, including contamination of water resources. There exist many physicochemical and biological landfill leachate treatment schemes with varying degrees of success. With an increasing focus on sustainability, there has been a demand for developing eco-friendly, green treatment schemes for landfill leachates with viable resource recovery and minimum environmental footprints. Microalgae-based techniques can be a potential candidate for such a treatment scenario. In this article, research on microalgae-based landfill leachate treatments reported in the last 15 years have been summarized and critically reviewed. The scale-up aspect of microalgae technology has been discussed, and the related critical factors have been elucidated. The article also analyzes the resource recovery potential for microalgal techniques with respect to leachate treatment and explores possible methodologies to minimize the environmental footprints of the microalgae-based treatment process. The future research potential in the area has been identified and discussed.


2020 ◽  
Vol 82 (9) ◽  
pp. 1721-1741
Author(s):  
Jéssica Stefanello Cadore ◽  
Lucas Fernando Fabro ◽  
Thuany Garcia Maraschin ◽  
Nara Regina de Souza Basso ◽  
Marçal José Rodrigues Pires ◽  
...  

Abstract The presence of contaminants in water is concerning due to the potential impacts on human health and the environment, and ingested contaminants cause harm in various ways. The conventional water treatment systems are not efficient to remove these contaminants. Therefore, novel techniques and materials for the removal of contaminants are increasingly being developed. The separation process using modified membranes can remove these micropollutants; therefore, they have attracted significant research attention. Among the materials used for manufacturing of these membranes, composites based on graphene oxide and reduced graphene oxide are preferred owing to their promising properties, such as mechanical resistance, thermal and chemical stability, antifouling capacity, water permeability, high thermal and electrical conductivity, high optical transmittance and high surface area. Membrane separation processes (MSP) can be used as secondary or tertiary treatment during the supply of wastewater. However, the efficient and accessible applications of these technologies are challenging. This study aims to demonstrate the main concepts of membrane separation processes and their application in the removal of emerging contaminants. This study reports bibliometric mapping, relevant data on studies using membranes as water treatment processes, and their viability in industrial applications. The main challenges and perspectives of these technologies are discussed in detail as well.


2006 ◽  
Vol 4 (3) ◽  
pp. 280-282 ◽  
Author(s):  
Sneh L. Jain ◽  
J. Barry Lakeman ◽  
Kevin D. Pointon ◽  
John T. S. Irvine

This paper describes a direct carbon fuel cell (DCFC) based on a solid oxide fuel cell (SOFC) system which has been used to assess the performance of a high surface area carbon fuel material. The cell, consisting of a co-fired anode, electrolyte, and cathode, has been produced by standard tape casting methods and is of tubular geometry. The operating conditions of the cell require a 62mol%Li2CO3 and 38mol%K2CO3 eutectic secondary electrolyte and the operation of the cell is described over the temperature range 525–700°C. The cell performance has been examined by standard electrochemical methods.


2015 ◽  
Vol 73 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Mohsen Jahanshahi ◽  
Majid Peyravi ◽  
Nader Shafaei ◽  
Hatef Mirani

This paper is focused on the fouling behaviour of the ultrafiltration membrane for landfill leachate treatment. Natural organic matter fouling is considered a critical factor controlling the membrane performance. In this regard, the polyethersulphone nanoporous membrane was fabricated by phase inversion. In order to investigate the effects of operating conditions on fouling, landfilled leachate treatment was done at different transmembrane pressure and feed concentration. At high concentration of landfill leachate, the effect of operating pressure can be negligible. The maximum amount of RFR was 0.961 for raw landfill leachate. Flux decline data were also obtained for the filtration of landfill leachate. The rates of flux decline drastically dropped to about 46–48% of the initial values in the first 30 minutes of the experiment at all the examined pressures. The data were also analyzed using a model in order to provide explanations for simultaneous pore blockage and cake formation. The model showed very good agreement with the data for all transmembrane pressures and feed concentrations. The initial fouling due to pore blockage is related to the feed concentration at constant pressure, so by diluting the feed concentration, the effect of pore blocking was increased.


2020 ◽  
Vol 3 (1) ◽  
pp. 23
Author(s):  
Hamdy Maamoun Abdel-Ghafar ◽  
ElSayed Abdel-Aal ◽  
Bahgat El_anadouli

Glauconite and kaolin are used as adsorbent materials for iron removal from synthetic solutions. Different concentrations of iron solutions have been prepared (10, 20 and 30 mg/L). Different dose of glauconite and kaolin were added (0.1, 0.55 and 1.0 g). Statistical design was used to determine the optimum conditions of iron adsorption on glauconite and kaolin. It is shown that glauconite has high adsorption for iron reaching to 95% while kaolin has lower adsorption for iron. Physical and chemical characterization of glauconite and kaolin was tested. High surface area of glauconite (19.8 m2/g) compared to kaolin (5.4 m2/g) explains its high removal efficiency. 


1996 ◽  
Vol 34 (9) ◽  
pp. 33-40 ◽  
Author(s):  
J. Fettig ◽  
H. Stapel ◽  
C. Steinert ◽  
M. Geiger

Landfill leachate pretreated in an aerobic biological stage was studied with respect to the adsorption behaviour of its organic components with and without preoxidation by different amounts of ozone. Isotherm data evaluated by adsorption analysis showed that the fractions of non-adsorbable and weakly adsorbable species had been increased after preoxidation. As a result, the carbon capacity in a fixed-bed adsorption process was expected to be significantly lower for preoxidized leachate. This conclusion was confirmed by data from column experiments. The breakthrough curves under operating conditions typical for leachate treatment could be predicted quite well by the homogeneous surface diffusion model when no preoxidation was applied. After preozonation about 40% of the remaining organic substances were biodegradable. Data evaluation revealed that biodegradation took place inside the activated carbon beds. Therefore the total removal of ozonated leachate in activated carbon columns will be higher than the removal due to adsorption processes. An economic analysis must show in any practical case whether a combination of preoxidation and adsorption will be more cost-efficient than either of the single processes. The modelling technique applied in this study can be a useful tool for that purpose.


2019 ◽  
Vol 889 ◽  
pp. 216-222 ◽  
Author(s):  
Huu Quynh Anh Le ◽  
Dinh Tuan Phan

The volatile organic compounds (VOCs) contribute to serious air pollution problems in Viet Nam. Many studies have investigated in air quality monitoring and treatment, in order to determine the average concentrations of Benzene, Toluene, Ethylbenzene and Xylene (BTEX). Carbon nanotubes (CNTs) have been widely used as adsorbent in environmental treatment, especially for VOCs. This paper aims to determine the adsorption capacity of multiwalled carbon nanotubes for removal of BTEX from air samples. In preliminary study, the effects of various parameters during adsorption experiments were monitored such as flow rate, temperature and BTEX concentrations in air samples. The equipment for BTEX removal was developed by our research team consisting of filter columns, air sample bags, adsorption cartridge. The air samples containing BTEX were conducted directly through a cartridge packed with adsorbent. The adsorption experiments were carried out under various operating conditions such as temperature (30 - 40°C), gas concentration (0,57 - 4,77 mg/L) and the gas flow rate (10 - 90 mL/min). In addition, isotherm studies of CNTs for BTEX removal were achieved by using Langmuir and Freundlich models. The results showed that the experimental parameters were optimized at a flow rate of 30 mL/min and an ambient temperature at 30°C. The adsorption capacity of CNTs increased proportionally with BTEX concentrations. The specific affinity of CNTs for BTEX from air samples was in order of X > E > T > B. The experimental isotherm data were well-fit with the Langmuir model for Benzene and Xylene removal, and the Freundlich model for Toluene and Ethylbenzene adsorption. The CNTs presented highly potential application for BTEX adsorption thanks to their microporous structure and high surface area.


Sign in / Sign up

Export Citation Format

Share Document