scholarly journals Ultrahigh resolution 3D imaging and characterisation of nanoscale pore structure in shales and its control on gas transport

Author(s):  
Mohamed Garum ◽  
Paul Glover ◽  
Piroska Lorinczi ◽  
Ali Hassanpour

<p> </p><p>Cost-effective and environmentally sensitive shale gas production requires detailed knowledge of the petrophysical characteristics of the shale from which the gas is extracted. Parameters such as the kerogen fraction, pore size distributions, porosity, permeability, the frackability of the rock and the degree to which natural fracturing already occurs are required in order to be able to estimate potential gas reserves and how easily it can be extracted. Innovative imaging techniques, including Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) and Nanoscale X-Ray Tomography (nano-CT), can be used to characterise the microstructural properties of shale. Here we report using FIB-SEM serial sectioning and nano-CT on approximately cubic samples of side length about 25 µm. The resolution of the FIB-SEM scanning is approximately 20 nm, while that of the nano-CT is about 50 nm, providing between 125 and 1953 million voxels per scan. These ultra-high resolution techniques have been shown to be effective methods for the analysis and imaging of shale microstructure. Each technique can provide data over a different and separate range of scales, and with different resolutions. Results analysed so far indicate that pores which seem to be unconnected when imaged on a micrometre scale by micro-CT scanning, are connected by thin pathways when imaged at these higher resolutions. This nano-scale connectivity is responsible for the small but non-zero permeability of gas shales to gas flow, which is typically measured in the range 5 nD – 200 nD. The volume, size, aspect ratios, surface area to volume ratio and orientations have all been calculated from the scanned data as a function of scale. These data indicate an extremely complex, heterogeneous, anisotropic and multimodal pore nanostructure and microstructure for the shales, with structure at all scales contributing to both gas storage and gas flow. Further work analysing the connectivity of the microscale and nanoscale pore spaces within the rock is underway. We believe that the combination of nano-CT with FIB-SEM on the same sample has the potential for providing an enhanced understanding of shale microstructure, which is necessary for modelling elastic behaviour, gas storage, gas desorption and gas flow in gas shales.</p><p><strong>Keywords:</strong> Gas shale, FIB-SEM, nano-CT, porosity, permeability, Kerogen, pore volume, size distribution, pore aspect ratio and surface area to pore volume.</p>

2017 ◽  
Author(s):  
Mozhdeh Mehrabi ◽  
Mehrdad Pasha ◽  
Ali Hassanpour ◽  
Paul W. J. Glover ◽  
Xiaodong Jia

Abstract. Optimisation of gas production from shale gas reservoirs depends critically upon a good understanding of the porosity and pore microstructure of the shale. Conventionally surface area measurements or mercury porosimetry have been used to measure the porosity in gas shales. However, these conventional methods have limited accuracy and only provide a bulk measurement for the samples. More recently, scanning electron micrography (SEM) and Focussed Ion Beam SEM (FIB-SEM) techniques have been applied in an attempt to address these limitations. Unfortunately, these two methods destroy the samples. In this research three-dimensional x-ray micro tomography (XRMT) imaging techniques were used to capture the structure of three samples and also compared to data from mercury porisimetry. The resulting data have been segmented in order to recognize individual pores down to a resolution of about 1 µm. Distributions of pore volume, pore size, pore aspect ratio, surface area to pore volume ratios and pore orientations were calculated from the XRMT data. It was found that the porosity obtained from XRMT measurements is smaller than that obtained using mercury porisimetry, the reason for which might be displacement of kerogen by the high pressures generated in the mercury technique, but is unlikely to be due to both techniques not being able to measure pores smaller that about 900 nm. Pore volume and size distributions showed all of the shales tested in this work to be multimodal with similar major modal values for volume and pore size. The pores also have a range of pore aspect ratios and surface area to pore volumes, including values indicating the presence of significant oblate spheroidal pores where the major axis is up to 330 times bigger than the minor axis. This has implications both for the connectedness of pores and the resultant gas permeability and the effectiveness of gas desorption processes into the gas shale's pores. These high aspect ratio pores were oriented both in dip and azimuth in preferential directions making it likely that the shale gas itself has significant anisotropy both for permeability and in its mechanical properties. Permeabilities calculated from the XRMT distribution data matched very well with permeabilities obtained by scaling considerations and typical values for similar gas shales.


Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 588 ◽  
Author(s):  
Giorgio Gatti ◽  
Mina Errahali ◽  
Lorenzo Tei ◽  
Maurizio Cossi ◽  
Leonardo Marchese

The preparation of porous carbons by post-synthesis treatment of hypercrosslinked polymers is described, with a careful physico-chemical characterization, to obtain new materials for gas storage and separation. Different procedures, based on chemical and thermal activations, are considered; they include thermal treatment at 380 °C, and chemical activation with KOH followed by thermal treatment at 750 or 800 °C; the resulting materials are carefully characterized in their structural and textural properties. The thermal treatment at temperature below decomposition (380 °C) maintains the polymer structure, removing the side-products of the polymerization entrapped in the pores and improving the textural properties. On the other hand, the carbonization leads to a different material, enhancing both surface area and total pore volume—the textural properties of the final porous carbons are affected by the activation procedure and by the starting polymer. Different chemical activation methods and temperatures lead to different carbons with BET surface area ranging between 2318 and 2975 m2/g and pore volume up to 1.30 cc/g. The wise choice of the carbonization treatment allows the final textural properties to be finely tuned by increasing either the narrow pore fraction or the micro- and mesoporous volume. High pressure gas adsorption measurements of methane, hydrogen, and carbon dioxide of the most promising material are investigated, and the storage capacity for methane is measured and discussed.


2021 ◽  
Vol 21 (1) ◽  
pp. 567-577
Author(s):  
Jun He ◽  
Mingke Wang ◽  
Jienan Pan ◽  
Xianglong Wang ◽  
Yiju Tang

To understand the nanoscale pore development characteristics of closed coal under the combined influence of temperature and confined pressure, a series of experiments at different temperatures and pressures were carried out using a custom closed coal temperature and pressure experimental system. The lean coal samples were taken from a mining area in Qinshui Basin, North China. In these experiments, the temperature was 200 °C or 300 °C, the pressure was 14 MPa or 23 MPa, respectively, and the experiment duration was 12 h. The CH4/N2/CO2 isothermal adsorption tests were carried out on all samples. The results show that the custom experimental system can be used to effectively study the effect of mechanical-thermal interaction on the nanoscale pores in closed coal. Before and after the experiment, the Langmuir volume increases, and the methane adsorption capacity increases. The specific surface area and pore volume of the micropores (<1 nm) decrease, but the specific surface area and pore volume of the pores (6–100 nm) increase. The specific surface area and pore volume of the micropores (<1 nm) are negatively correlated with the temperature and decrease with increasing temperature. Fractal analysis results show that under the influence of temperature and pressure, the heterogeneity of the nanoscale pore structure and the roughness of the pore surface increase. This research is of important theoretical significance for the safe mining of deep coal seams and for the development of coalbed methane resources.


2017 ◽  
Vol 68 (3) ◽  
pp. 483-486
Author(s):  
Constantin Sorin Ion ◽  
Mihaela Bombos ◽  
Gabriel Vasilievici ◽  
Dorin Bombos

Desulfurisation of atmospheric distillation gasoline and gas oil was performed by adsorption process on Fe/ bentonite. The adsorbent was characterized by determining the adsorption isotherms, specific surface area, pore volume and average pore diameter. Adsorption experiments of atmospheric distillation gasoline and gas oil were performed in continuous system at 280�320oC, 5 atm and volume hourly space velocities of 1�2 h-1. The efficiency of adsorption on Fe / bentonite was better at desulphurisation of gasoline versus gas oil.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 298
Author(s):  
Chenlong Ding ◽  
Jinxian He ◽  
Hongchen Wu ◽  
Xiaoli Zhang

Ordos Basin is an important continental shale gas exploration site in China. The micropore structure of the shale reservoir is of great importance for shale gas evaluation. The Taiyuan Formation of the lower Permian is the main exploration interval for this area. To examine the nanometer pore structures in the Taiyuan Formation shale reservoirs in the Lin-Xing area, Northern Shaanxi, the microscopic pore structure characteristics were analyzed via nitrogen adsorption experiments. The pore structure parameters, such as specific surface area, pore volume, and aperture distribution, of shale were calculated; the significance of the pore structure for shale gas storage was analyzed; and the main controlling factors of pore development were assessed. The results indicated the surface area and hole volume of the shale sample to be 0.141–2.188 m2/g and 0.001398–0.008718 cm3/g, respectively. According to the IUPAC (International Union of Pure and Applied Chemistry) classification, mesopores and macropores were dominant in the pore structure, with the presence of a certain number of micropores. The adsorption curves were similar to the standard IV (a)-type isotherm line, and the hysteresis loop type was mainly similar to H3 and H4 types, indicating that most pores are dominated by open type pores, such as parallel plate-shaped pores and wedge-shaped slit pores. The micropores and mesopores provide the vast majority of the specific surface area, functioning as the main area for the adsorption of gas in the shale. The mesopores and macropores provide the vast majority of the pore volume, functioning as the main storage areas for the gas in the shale. Total organic carbon had no notable linear correlation with the total pore volume and the specific surface area. Vitrinite reflectance (Ro) had no notable correlation with the specific surface area, but did have a low “U” curve correlation with the total pore volume. There was no relationship between the quartz content and specific surface area and total pore volume. In addition, there was no notable correlation between the clay mineral content and total specific surface area and total pore volume.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3829
Author(s):  
Jie Zhang ◽  
Feifei Fang ◽  
Wei Lin ◽  
Shusheng Gao ◽  
Yalong Li ◽  
...  

With the increasing energy demands of current modern society, underground gas storage (UGS) in gas fields is the most popular type of UGS used to meet the seasonal variation of gas consumption. However, compared with gas fields, UGS in gas fields has the characteristics of periodic high-speed injection and production of exploitation modes and operation rules, which causes the rules of gas-water seepage and utilization of reserves to be more particular and complicated. In this paper, based on Wen 23 gas storage, the rules of multicycle injection and production flow and the utilization of UGS pore volume were investigated. The experimental results showed that variation in porosity and permeability caused by injection and production pressure changes in Wen 23 gas storage can be neglected. The pore volume of gas storage and the degree of gas recovery increased gradually in the pre-UGS gas zone, which was higher than that of reservoirs. In the initial stage of UGS operation, the pore volume of gas storage and the degree of gas recovery were low in the gas-drive-water gas zone as a result of water invasion during the process of reservoir exploitation. During operation of multicycle high-speed injection and production, the seepage conditions in the gas-drive-water gas zone gradually improved. The higher the reservoir permeability, the greater increases in pore volume and degree of gas recovery. In the gas-water transition zone, gas and water were reciprocated and displaced with the multicycle injection-production of UGS, resulting in the gradual deterioration of pore volume and gas recovery, which remained stable at a low value. The negative effects of reservoir heterogeneity on the effective utilization of UGS occurred in the gas-water transition zone. These findings may contribute to a better understanding of the rules of multicycle injection and production flow and utilization of UGS to optimize the injection-production efficiency of Wen 23 gas storage.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Hyunho Shin ◽  
Jun-Ho Eun

A TiC powder is synthesized from a micron-sized mesoporous metatitanic acid-sucrose precursor (precursor M) by a carbothermal reduction process. Control specimens are also prepared using a nanosized TiO2-sucrose precursor (precursor T) with a higher cost. When synthesized at 1500°C for 2 h in flowing Ar, the characteristics of the synthesized TiC from precursor M are similar to those of the counterpart from precursor T in terms of the crystal size (58.5 versus 57.4 nm), oxygen content (0.22 wt% versus 0.25 wt%), and representative sizes of mesopores: approximately 2.5 and 19.7–25.0 nm in both specimens. The most salient differences of the two specimens are found in the TiC from precursor M demonstrating (i) a higher crystallinity based on the distinctive doublet peaks in the high-two-theta XRD regime and (ii) a lower specific surface area (79.4 versus 94.8 m2/g) with a smaller specific pore volume (0.1 versus 0.2 cm3/g) than the counterpart from precursor T.


2015 ◽  
Vol 22 (6) ◽  
Author(s):  
Nazile Ural

AbstractIn this study, the relationships between geotechnical index properties and the pore-size distribution of compacted natural silt and artificial soil mixtures, namely, silt with two different clays and three different clay percentages (10%, 20%, and 40%), were examined and compared. Atterberg’s limit tests, standard compaction tests, mercury intrusion porosimetry, X-ray diffraction, scanning electron microscopy (SEM) analysis, and Brunauer-Emmett-Teller specific surface analysis were conducted. The results show that the liquid limit, the cumulative pore volume, and specific surface area of artificially mixed soils increase with an increase in the percentage of clay. The cumulative pore volume and specific surface area with geotechnical index properties were compared. High correlation coefficients were observed between the specific areas and both the liquid limit and the plasticity index, as well as between the cumulative pore volume and both the clay percentage and the


1974 ◽  
Vol 14 (01) ◽  
pp. 44-54 ◽  
Author(s):  
Gary W. Rosenwald ◽  
Don W. Green

Abstract This paper presents a mathematical modeling procedure for determining the optimum locations of procedure for determining the optimum locations of wells in an underground reservoir. It is assumed that there is a specified production-demand vs time relationship for the reservoir under study. Several possible sites for new wells are also designated. possible sites for new wells are also designated. The well optimization technique will then select, from among those wellsites available, the locations of a specified number of wells and determine the proper sequencing of flow rates from Those wells so proper sequencing of flow rates from Those wells so that the difference between the production-demand curve and the flow curve actually attained is minimized. The method uses a branch-and-bound mixed-integer program (BBMIP) in conjunction with a mathematical reservoir model. The calculation with the BBMIP is dependent upon the application of superposition to the results from the mathematical reservoir model.This technique is applied to two different types of reservoirs. In the first, it is used for locating wells in a hypothetical groundwater system, which is described by a linear mathematical model. The second application of the method is to a nonlinear problem, a gas storage reservoir. A single-phase problem, a gas storage reservoir. A single-phase gas reservoir mathematical model is used for this purpose. Because of the nonlinearity of gas flow, purpose. Because of the nonlinearity of gas flow, superposition is not strictly applicable and the technique is only approximate. Introduction For many years, members of the petroleum industry and those concerned with groundwater hydrology have been developing mathematical reservoir modeling techniques. Through multiple runs of a reservoir simulator, various production schemes or development possibilities may be evaluated and their relative merits may be considered; i.e., reservoir simulators can be used to "optimize" reservoir development and production. Formal optimization techniques offer potential savings in the time and costs of making reservoir calculations compared with the generally used trial-and-error approach and, under proper conditions, can assure that the calculations will lead to a true optimum.This work is an extension of the application of models to the optimization of reservoir development. Given a reservoir, a designated production demand for the reservoir, and a number of possible sites for wells, the problem is to determine which of those sites would be the best locations for a specified number of new wells so that the production-demand curve is met as closely as possible. Normally, fewer wells are to be drilled than there are sites available. Thus, the question is, given n possible locations, at which of those locations should n wells be drilled, where n is less than n? A second problem, that of determining the optimum relative problem, that of determining the optimum relative flow rates of present and future wells is also considered. The problem is attacked through the simultaneous use of a reservoir simulator and a mixed-integer programming technique.There have been several reported studies concerned with be use of mathematical models to select new wells in gas storage or producing fields. Generally, the approach has been to use a trial-and-error method in which different well locations are assumed. A mathematical model is applied to simulate reservoir behavior under the different postulated conditions, and then the alternatives are postulated conditions, and then the alternatives are compared. Methods that evaluate every potential site have also been considered.Henderson et al. used a trial-and-error procedure with a mathematical model to locate new wells in an existing gas storage reservoir. At the same time they searched for the operational stratagem that would yield the desired withdrawal rates. In the reservoir that they studied, they found that the best results were obtained by locating new wells in the low-deliverability parts of the reservoir, attempting to maximize the distance between wells, and turning the wells on in groups, with the low-delivery wells turned on first.Coats suggested a multiple trial method for determining well locations for a producing field. SPEJ P. 44


2021 ◽  
Vol 15 (2) ◽  
pp. 131-144
Author(s):  
Chunjiang Jin ◽  
Huimin Chen ◽  
Luyuan Wang ◽  
Xingxing Cheng ◽  
Donghai An ◽  
...  

In this study, aspen wood sawdust was used as the raw material, and Fe(NO3)3 and CO2 were used as activators. Activated carbon powder (ACP) was produced by the one-step physicochemical activation method in an open vacuum tube furnace. The effects of different mass ratios of Fe(NO3)3 and aspen wood sawdust on the pore structure of ACP were examined under single-variable experimental conditions. The mass ratio was 0–0.4. The detailed characteristics of ACP were examined by nitrogen adsorption, scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The adsorption capacity of ACP was established by simulating volatile organic compounds (VOCs) using ethyl acetate. The results showed that ACP has a good nanostructure with a large pore volume, specific surface area, and surface functional groups. The pore volume and specific surface area of Fe-AC-0.3 were 0.26 cm3/g and 455.36 m2/g, respectively. The activator played an important role in the formation of the pore structure and morphology of ACP. When the mass ratio was 0–0.3, the porosity increased linearly, but when it was higher than 0.3, the porosity decreased. For example, the pore volume and specific surface area of Fe-AC-0.4 reached 0.24 cm3/g and 430.87 m2/g, respectively. ACP presented good VOC adsorption performance. The Fe-AC-0.3 sample, which contained the most micropore structures, presented the best adsorption capacity for ethyl acetate at 712.58 mg/g. Under the action of the specific reaction products nitrogen dioxide (NO2) and oxygen, the surface of modified ACP samples showed different rich C/O/N surface functional groups, including C-H, C=C, C=O, C-O-C, and C-N.


Sign in / Sign up

Export Citation Format

Share Document