Heat Events in the Indian Subcontinent under a warming climate scenario: Detection and its Drivers

Author(s):  
Kapoor Ritika ◽  
Enrico Scoccimarro ◽  
Carmen Alvarez-Castro ◽  
Stefano Materia ◽  
Silvio Gualdi

<p>Global temperatures have shown a warming trend over the last century, mainly as a result of anthropogenic activities. Rising temperatures are a potential cause for increase of extreme climate events, such as heat waves, both in severity and frequency. Under an increasing extreme event scenario, the world population of mid- and low-latitude countries is more vulnerable to heat related mortality and morbidity. In India, the events occurred in recent years have made this vulnerability clear, since the numbers of heat related deaths are on a rise.</p><p>Over India, the heat waves occur during the months of April to June and can impact various sectors including health, agriculture, ecosystems and the national economy. In May 2015, a severe heat wave due to the delayed onset of southwest monsoon affected parts of south-eastern India, which claimed more than 2500 lives.</p><p>Preliminary results show the prevalence of Heat events in North-West, Central and South-Eastern regions of India during the pre-monsoon (March, April, May) and transitional (May, June, July) months. We consider the Heat Index (HI), a combination of temperature and relative humidity, also known as apparent temperature, gives an insight into the discomfort because of increment in humidity, that reduces the efficiency of body’s cooling mechanism as it blocks evaporation. Thus, along with temperature anomalies, humidity also plays a role in transitional period.</p><p>Heatwaves over India are known to be linked with El-Niño-Southern Oscillation or ENSO, but some studies indicated that the processes generating heat waves over northwest-central and coastal eastern India could be linked to anomalous blocking over North Atlantic and to the cooling over central and east equatorial Pacific. While other studies demonstrated that anomalous persistent high-pressure systems, supplemented with clear skies and depleted soil moisture, are primarily responsible for the occurrence of heat waves over India.</p><p>The changes in the frequency and intensity of extreme events have profound impact on human society and the natural environment. The heat stress and underlying anomalous conditions can exacerbate an increase in the number of deaths. While global heat wave and health impact research is prolific in some regions, the global population most incline to risk of death and conspicuous harm caused by extreme heat is under-represented. Heat wave and health impact research are needed in regions where this impact is expected to be most severe.</p>

Circulation ◽  
2017 ◽  
Vol 135 (suppl_1) ◽  
Author(s):  
Yi Wang

Background: The association between heat and hospital admissions is well studied, but in Indiana where the regulatory agencies cites lack of evidence for global climate change, local evidence of such an association is critical for Indiana to mitigate the impact of increasing heat. Methods: Using a distributed-lag non-linear model, we studied the effects of moderate (31.7 °C or 90 th percentile of daily mean apparent temperature (AT)), severe (33.5 °C or 95 th percentile of daily mean apparent temperature (AT)) and extreme (36.4 °C or 99 th percentile of AT) heat on hospital admissions (June-August 2007-2012) for cardiovascular (myocardial infarction, myocardial infarction, heart failure) and heat-related diseases in Indianapolis, Indiana located in Marion County. We also examined the added effects of moderate heat waves (AT above the 90 th percentile lasting 2-6 days), severe heat waves (AT above the 95 th percentile lasting 2-6 days) and extreme heat waves (AT above the 99 th percentile lasting 2-6 days). In sensitivity analysis, we tested robustness of our results to 1) different temperature and lag structures and 2) temperature metrics (daily min, max and diurnal temperature range). Results: The relative risks of moderate heat, relative to 29.2°C (75 th percentile of AT), on admissions for cardiovascular disease (CVD), myocardial infarction (MI), heart failure (HF), and heat-related diseases (HD) were 0.98 (0.67, 1.44), 6.28 (1.48, 26.6), 1.38 (0.81, 2.36) and 1.73 (0.58, 5.11). The relative risk of severe heat on admissions for CVD, MI, HF, and HD were 0.93 (0.60, 1.43), 4.46 (0.85, 23.4), 1.30 (0.72, 2.34) and 2.14 (0.43, 10.7). The relative risk of extreme heat were 0.79 (0.26, 2.39), 0.11 (0.087, 1.32), 0.68 (0.18, 2.61), and 0.32 (0.005, 19.5). We also observed statistically significant added effects of moderate heat waves lasting 4 or 6 days on hospital admission for MI and HD and extreme heat waves lasting 4 days on hospital admissions for HD. Results were strengthened for people older than 65. Conclusions: Moderate heat wave lasting 4-6 days were associated with increased hospital admissions for MI and HD diseases and extreme heat wave lasting 4 days were associated with increased admissions for HD.


2020 ◽  
Vol 29 (2) ◽  
pp. 212-222
Author(s):  
Zahraa Hassan ◽  
Hazima Al-Abassi ◽  
Monim Al-Jiboori

This investigation aim to evaluate the effect of heat wave on health of human, so to achieve this 40 blood samples for person exposed to heat wave were drawn most patients were attend to specialists in hospital laboratories (Medical City, Ibn al-Baladi, Sheikh Zayed, Kadhimiya Educational). The patients aged 10–60 years, male (20) and female (20). CBC analyzes was performed. The result of the presents study recorded a highly signifi cant difference in total (mean and percent) as compared with the normal value of the CBC analyze the result for total (mean and percent) for male the factors CRP, ESR, WBC, PCV, PL (15.5, 43, 11.35, 28.5, 215) respectively (100%, 100%, 100%, 100%, 100%) and the result for total (mean and percent) for female the factors CRP, ESR, WBC, PCV, PL (15, 43.5, 11.35, 31, 220.5) respectively (100%, 100%, 100%, 100%, 100%). According to the result we can conclude that there was a highly significant deferent in mean value for patient compared with the normal value which is the mean cause of hard attack which lead to death. The study is the fi rst of its kind in the Department of Atmospheric Sciences in Iraq.


2021 ◽  
Author(s):  
Ritika Kapoor ◽  
Carmen Alvarez-Castro ◽  
Enrico Scoccimarro ◽  
Stefano Materia ◽  
Silvio Gualdi

<p>Rising global temperatures are a potential cause for increase of extreme climate events, such as heat waves, both in severity and frequency. Under an increasing extreme event scenario, the world population of mid- and low-latitude countries is more vulnerable to heat related mortality and morbidity.</p><p>In India, the events occurred in recent years have made this vulnerability clear, since the numbers of heat-related deaths are on a rise, and heat waves can impact various sectors including health, agriculture, ecosystems and the national economy.</p><p>Preliminary results show the prevalence of heat events in seven different regions of India during the pre-monsoon (March, April, May) and transitional (May, June, July) months. We consider daily maximum temperatures (Tmax) and the NOAA’s Heat Index (HI), a combination of temperature and relative humidity that gives an insight into the discomfort because of increment in humidity.</p><p>We look into various drivers behind the heat events in the seven different clusters, in particular ENSO and the North Atlantic Regimes that have been linked to the generation of heat waves in different parts of India. The preliminary results indicate Nino 3.4 SST anomalies show positive correlation with Tmax anomalies only in the western coast during pre-monsoon season, while in the transitional months positive correlation extends to central and east India. The Tmax composite anomalies for the cold, warm and neutral phases of ENSO show positive anomalies for only warm years and negative anomalies for the cool and neutral years. Heat Index shows similar spatial patterns for correlation analysis and composite anomaly analysis. The Mean Sea Level Pressure (MSLP) composite associated with heat waves (days exceeding 95th percentile=>3 days) show a persistent ridge over the North Atlantic region.</p><p> </p>


2020 ◽  
Author(s):  
Ondřej Lhotka ◽  
Jan Kyselý

<p>Europe experienced several major heat waves in the recent summers, substantially affecting human society and environment. Heat waves are generally related to joint effect of perturbed atmospheric circulation and anomalies in surface energy budget, and they are often linked to hydrological preconditioning. Contributions of these driving mechanisms, however, vary across European climatic zones. Climate models struggle to simulate the spatial differences properly, ultimately leading to large uncertainties in future heat waves’ characteristics. As the first step towards identifying spatial patterns of differences between driving mechanisms of temperature extremes, a pan-European database of observed major heat waves has been created. Heat waves are studied using the E-OBS 20.0e dataset in 0.1° horizontal grid spacing, which is analogous to that used in the ERA5 reanalysis and CORDEX regional climate models. Magnitude of heat waves is defined with respect to local daily maximum temperature (Tmax) variance, using multiples of standard deviation of Tmax summed across individual events. For each heat wave, circulation conditions and surface energy fluxes are analysed using the ERA5 reanalysis, in order to study their links to the heat wave magnitude and geographical location. In the next step, these findings are used for analyzing spatial patterns of heat wave mechanisms and as a source of reference data for evaluation of relevant processes in climate models.</p>


2021 ◽  
Author(s):  
Sang-Wook Yeh ◽  
Eun-Hye Lee ◽  
Seung-Ki Min

Abstract The frequency and duration of extreme heat events, including heat waves (HWs, daytime hot extremes) and tropical night (TNs), are increasing significantly as the climate warms, adversely affecting human health, agriculture, and energy consumption. Although many detection and attribution studies have examined extreme heat events, the underlying mechanisms associated with the recent increase in HWs and TNs remain unclear. In this study, we analyze the controlling factors behind the distinct increases in HW and TN events over the Northern Hemisphere during boreal summer (June to August). We found that the occurrence of HW events has been increasing gradually since 1980, mostly due to anthropogenic forcing. However, the occurrence of TN events increased abruptly during the late 1990s and has changed little since then. We demonstrate that this sudden increase in TN events is closely associated with low frequency variability in sea surface temperature, including the Pacific Decadal Oscillation, indicating its natural origin. We further found that CMIP5 climate models fail to capture the observed non-linear increases in TN events, implying potentially large uncertainty in future projections of nighttime heat events and its impacts on human society and ecosystem.


2018 ◽  
Vol 146 (3) ◽  
pp. 889-907 ◽  
Author(s):  
Lauriane Batté ◽  
Constantin Ardilouze ◽  
Michel Déqué

Abstract Early indication of an increased risk of extremely warm conditions could help alleviate some of the consequences of severe heat waves on human health. This study focuses on boreal spring heat wave events over West Africa and the Sahel and examines the long-range predictability and forecast quality of these events with two coupled forecasting systems designed at Météo-France, both based on the CNRM-CM coupled global climate model: the operational seasonal forecasting System 5 and the experimental contribution to the World Weather Research Programme/World Climate Research Programme (WWRP/WCRP) subseasonal-to-seasonal (S2S) project. Evaluation is based on past reforecasts spanning 22 years, from 1993 to 2014, compared to reference data from reanalyses. On the seasonal time scale, skill in reproducing interannual anomalies of heat wave duration is limited at a gridpoint level but is significant for regional averages. Subseasonal predictability of daily humidity-corrected apparent temperature drops sharply beyond the deterministic range. In addition to reforecast skill measures, the analysis of real-time forecasts for 2016, both in terms of anomalies with respect to the reforecast climatology and using a weather-type approach, provides additional insight on the systems’ performance in giving relevant information on the possible occurrence of such events.


2005 ◽  
Vol 10 (7) ◽  
pp. 3-4 ◽  
Author(s):  
T Kosatsky

The current issue of Eurosurveillance updates and provides additional context to the report in early 2004 of an estimated 22 080 excess deaths in England and Wales, France, Italy and Portugal during and immediately after the heat waves of the summer of 2003 [1]. While estimates for England and Wales [2], France [3], and Portugal [4], are largely unchanged from those reported earlier, to these should be added 6595-8648 excess deaths in Spain [5], of which approximately 54% or 3574-4687 occurred in August, and 1400-2200 in the Netherlands [6], of which an estimated 500 occurred during the heat wave of 31 July-13 August. Data for Italy, provided here for the cities of Bologna, Milan, Rome, and Turin, are compatible with the earlier estimate that 3134 excess deaths occurred in the 21 Italian regional capitals during the period 1 June-15 August [1,7]; the Italian National Institute of Statistics however, reported an excess of 19 780 deaths country-wide during June-September 2003 as compared to 2002 [8]. Reports elsewhere indicate that approximately 1250 heat-related deaths occurred in Belgium during the summer of 2003 [9], that there were 975 excess deaths during June-August in Switzerland [10] and 1410 during the period August 1-24 in Baden-Württemberg, Germany [11]. At this point, it seems reasonable to speculate that with evidence of heat wave-associated deaths beyond England and Wales, France, Italy, and Portugal, the previously published estimate of 22 080 early August excess deaths should be revised upward by at least 50% for all of western Europe, and by 100% or more if heat events that occurred during June and July 2003 are also taken into account.


2013 ◽  
Vol 52 (7) ◽  
pp. 1618-1631 ◽  
Author(s):  
Karin A. Bumbaco ◽  
Kathie D. Dello ◽  
Nicholas A. Bond

AbstractA historical record of Pacific Northwest (defined here as west of the Cascade Mountains in Washington and Oregon) heat waves is identified using the U.S. Historical Climate Network, version 2, daily data (1901–2009). Both daytime and nighttime events are examined, defining a heat wave as three consecutive days above the 99th percentile for the maximum and minimum temperature anomalies separately. Although the synoptic characteristics of the daytime and nighttime heat events are similar, they do indicate some differences between the two types of events. Most notable is a stronger influence of downslope warming over the Cascade Mountains for the daytime events versus a more important role of precipitable water content for the nighttime events, presumably through its impact on downward longwave radiative fluxes. Current research suggests that the frequency and duration of heat waves are expected to increase in much of the United States, and analysis of the heat events reveals that a significant, increasing trend in the frequency of the nighttime events is already occurring in the Pacific Northwest. A heat wave occurred in 2009 that set all-time-record maximum temperatures in many locations and ranked as the second strongest daytime event and the longest nighttime event in the record.


2020 ◽  
Vol 12 (7) ◽  
pp. 1174
Author(s):  
Cong Yin ◽  
Fei Yang ◽  
Juanle Wang ◽  
Yexing Ye

Heat waves seriously affect the productivity and daily life of human beings. Therefore, they bring great risks and uncertainties for the further development of countries in the One Belt and One Road (OBOR) region. In this study, we used daily meteorological monitoring data to calculate the daily apparent temperature and annual heat wave dataset for 1989–2018 in the OBOR region. Then, we studied their spatiotemporal distribution patterns. Additionally, multi-source data were used to assess heat wave risk in the OBOR region. The main results are as follows: (1) The daily apparent temperature dataset and annual heat wave dataset for 1989–2018 in the OBOR region at 0.1° × 0.1° gridded resolution were calculated. China, South Asia and Southeast Asia are suffering the most serious heat waves in the OBOR region, with an average of more than six heat waves, lasting for more than 60 days and the extreme apparent temperature has reached over 40 °C. Additionally, the frequency, duration and intensity of heat waves have been confirmed to increase continuously. (2) The heat wave risk in the OBOR region was assessed. Results show that the high heat wave risk areas are distributed in eastern China, northern South Asia and some cities. The main conclusion is that the heat wave risk in most areas along the OBOR route is relatively high. In the process of deepening the development of countries in the OBOR region, heat wave risk should be fully considered.


2018 ◽  
Vol 39 (4) ◽  
pp. 2422-2437 ◽  
Author(s):  
Daniel Fenner ◽  
Achim Holtmann ◽  
Alexander Krug ◽  
Dieter Scherer

Sign in / Sign up

Export Citation Format

Share Document