Climate Risk and Vulnerability Assessment in Azerbaijan’s mountain regions

Author(s):  
Marc Zebisch ◽  
Stefano Terzi ◽  
Alice Crespi ◽  
Ruth Sonnenschein ◽  
Stefan Steger

<p>Mountain regions are an important hotspot of vulnerability to climate change. These ecosystems are experiencing a higher warming rate than other areas in the world, with severe consequences on the environment, the economy and society. This is particularly relevant for Azerbaijan’s mountain regions, where the climate change impacts on water management could lead to severe consequences on the main local socio-economic activities such as agriculture and livestock farming.</p><p>For these reasons, the Impact Chains (ICs) methodology has been applied within two regions of Azerbaijan to understand and investigate cause-effect chains of current and future risk from different type of climate hazards following the approach proposed in the Fifth Assessment Report (AR5) of the International Panel on Climate Change (IPCC). ICs provide a consolidated scheme which helps to better understand, systemize and prioritize the factors driving climate impact related risks in a specific system and to perform climate risk assessments. It includes the underlying root-causes of climate risk, hazard, exposure and vulnerability factors and their interactions coming from quantitative and qualitative information.</p><p>Here we present the ICs study for Azerbaijan’s mountain regions accounting for flood, drought, erosion, heat stress and forest fires identified as the most relevant hazards in the country.</p><p>Climate conditions and future hazard components were assessed looking at future daily temperature and precipitation data until 2099 from two RCP (Representative Concentration Pathways) scenarios provided by the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP). The spatialized dataset is an ensemble of four global climate model simulations at a resolution of 0.5°x0.5°. In particular, the ISIMIP projections were exploited to extract the future evolution and spatial distribution over the region of relevant indicators for climate and climate hazards, including weather extremes and droughts.</p><p>The different levels of exposure and vulnerability were evaluated combining quantitative and qualitative information coming from spatial analysis, workshop discussion and questionnaires with local stakeholders and experts.</p><p>To finalize the risk assessment, the hazard, exposure and vulnerability components were combined through aggregation and normalisation techniques and risk indicators and hotspot maps for Azerbaijan’s mountain regions were developed.</p><p>The information provided by the ICs will be available to further analyse the risk processes and local dynamics, and to support local stakeholders in decision-making process and future investments on risk reduction and climate adaptation plans.</p>

Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 497 ◽  
Author(s):  
Ching-Pin Tung ◽  
Jung-Hsuan Tsao ◽  
Yu-Chuan Tien ◽  
Chung-Yi Lin ◽  
Bing-Chen Jhong

To comprehensively assess the climate risk originating from climate change, this study aims at developing a novel climate adaptation algorithm, representing not only on the basis of Climate Change Adaptation Six Steps (CCA6Steps), but also innovations in climate risk template. The climate risk template is proposed as a climate risk analysis tool based on the procedure of CCA6Steps, including the identification of problems and objectives, the analysis of current and future risks, and the assessment of adaptation options, to identify the relationship between the climate risk components, including hazard, exposure, and vulnerability. An application is implemented to demonstrate the advantages of the proposed algorithm in this study. The results show that the problems and objectives which concern the governance level and stakeholders can be clearly identified by the proposed algorithm. The relationship between climate-related hazards, exposure, and vulnerability of the protected target can also be precisely investigated. Furthermore, the climate adaptation strategies able to mitigate the impact of hazards on the protected target are further discussed in this study. In summary, the proposed climate adaptation algorithm is expected to provide a standard operating procedure and be a useful tool to support climate risk assessment.


2014 ◽  
Vol 15 (4) ◽  
pp. 1517-1531 ◽  
Author(s):  
Gerhard Smiatek ◽  
Harald Kunstmann ◽  
Andreas Heckl

Abstract The impact of climate change on the future water availability of the upper Jordan River (UJR) and its tributaries Dan, Snir, and Hermon located in the eastern Mediterranean is evaluated by a highly resolved distributed approach with the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) run at 18.6- and 6.2-km resolution offline coupled with the Water Flow and Balance Simulation Model (WaSiM). The MM5 was driven with NCEP reanalysis for 1971–2000 and with Hadley Centre Coupled Model, version 3 (HadCM3), GCM forcings for 1971–2099. Because only one regional–global climate model combination was applied, the results may not give the full range of possible future projections. To describe the Dan spring behavior, the hydrological model was extended by a bypass approach to allow the fast discharge components of the Snir to enter the Dan catchment. Simulation results for the period 1976–2000 reveal that the coupled system was able to reproduce the observed discharge rates in the partially karstic complex terrain to a reasonable extent with the high-resolution 6.2-km meteorological input only. The performed future climate simulations show steadily rising temperatures with 2.2 K above the 1976–2000 mean for the period 2031–60 and 3.5 K for the period 2070–99. Precipitation trends are insignificant until the middle of the century, although a decrease of approximately 12% is simulated. For the end of the century, a reduction in rainfall ranging between 10% and 35% can be expected. Discharge in the UJR is simulated to decrease by 12% until 2060 and by 26% until 2099, both related to the 1976–2000 mean. The discharge decrease is associated with a lower number of high river flow years.


2021 ◽  
Author(s):  
Laura Müller ◽  
Petra Döll

<p>Due to climate change, the water cycle is changing which requires to adapt water management in many regions. The transdisciplinary project KlimaRhön aims at assessing water-related risks and developing adaptation measures in water management in the UNESCO Biosphere Reserve Rhön in Central Germany. One of the challenges is to inform local stakeholders about hydrological hazards in in the biosphere reserve, which has an area of only 2433 km² and for which no regional hydrological simulations are available. To overcome the lack of local simulations of the impact of climate change on water resources, existing simulations by a number of global hydrological models (GHMs) were evaluated for the study area. While the coarse model resolution of 0.5°x0.5° (55 km x 55 km at the equator) is certainly problematic for the small study area, the advantage is that both the uncertainty of climate simulations and hydrological models can be taken into account to provide a best estimate of future hazards and their (large) uncertainties. This is different from most local hydrological climate change impact assessments, where only one hydrological model is used, which leads to an underestimation of future uncertainty as different hydrological models translate climatic changes differently into hydrological changes and, for example, mostly do not take into account the effect of changing atmospheric CO<sub>2</sub> on evapotranspiration and thus runoff.   </p><p>The global climate change impact simulations were performed in a consistent manner by various international modeling groups following a protocol developed by ISIMIP (ISIMIP 2b, www.isimip.org); the simulation results are freely available for download. We processed, analyzed and visualized the results of the multi-model ensemble, which consists of eight GHMs driven by the bias-adjusted output of four general circulation models. The ensemble of potential changes of total runoff and groundwater recharge were calculated for two 30-year future periods relative to a reference period, analyzing annual and seasonal means as well as interannual variability. Moreover, the two representative concentration pathways RCP 2.6 and 8.5 were chosen to inform stakeholders about two possible courses of anthropogenic emissions.</p><p>To communicate the results to local stakeholders effectively, the way to present modeling results and their uncertainty is crucial. The visualization and textual/oral presentation should not be overwhelming but comprehensive, comprehensible and engaging. It should help the stakeholder to understand the likelihood of particular hazards that can be derived from multi-model ensemble projections. In this contribution, we present the communication approach we applied during a stakeholder workshop as well as its evaluation by the stakeholders.</p>


2016 ◽  
Vol 155 (3) ◽  
pp. 407-420 ◽  
Author(s):  
R. S. SILVA ◽  
L. KUMAR ◽  
F. SHABANI ◽  
M. C. PICANÇO

SUMMARYTomato (Solanum lycopersicum L.) is one of the most important vegetable crops globally and an important agricultural sector for generating employment. Open field cultivation of tomatoes exposes the crop to climatic conditions, whereas greenhouse production is protected. Hence, global warming will have a greater impact on open field cultivation of tomatoes rather than the controlled greenhouse environment. Although the scale of potential impacts is uncertain, there are techniques that can be implemented to predict these impacts. Global climate models (GCMs) are useful tools for the analysis of possible impacts on a species. The current study aims to determine the impacts of climate change and the major factors of abiotic stress that limit the open field cultivation of tomatoes in both the present and future, based on predicted global climate change using CLIMatic indEX and the A2 emissions scenario, together with the GCM Commonwealth Scientific and Industrial Research Organisation (CSIRO)-Mk3·0 (CS), for the years 2050 and 2100. The results indicate that large areas that currently have an optimum climate will become climatically marginal or unsuitable for open field cultivation of tomatoes due to progressively increasing heat and dry stress in the future. Conversely, large areas now marginal and unsuitable for open field cultivation of tomatoes will become suitable or optimal due to a decrease in cold stress. The current model may be useful for plant geneticists and horticulturalists who could develop new regional stress-resilient tomato cultivars based on needs related to these modelling projections.


2021 ◽  
Author(s):  
Remi Meynadier ◽  
Hugo Rakotoarimanga ◽  
Madeleine-Sophie Deroche ◽  
Sylvain Buisine

<p>The large-scale and complex nature of climate change makes it difficult to assess and quantify the impact on insurance activities. Climate change is likely affecting the probability of natural hazard occurrence in terms of severity and/or frequency.</p><p>Natural catastrophe risk is a function of hazard, exposure and vulnerability. As a (re)-insurer it is seen that changes in year-on-year losses are a function of all these components and not just the hazard.</p><p>The present study focuses, in a first step, on assessing impacts of climate change on fluvial flood risks in Europe solely due to changes in hazard itself. A stochastic catalogue of future flood risk events is derived from Pan-European data sets of river flood probability of occurrence produced within EU FP7 RAIN project. The loss modelling framework internally developed at AXA is then used to provide a geographical view of changes in future flood risks.</p><p> </p>


2017 ◽  
pp. 302-313
Author(s):  
Saon Ray

This chapter discusses what constitutes adaptation responses by firms in the face of climate change. There are four integral components of adaptation activities undertaken by firms: assessment of risk, understanding of vulnerability, understanding the regulatory barriers to overcome the vulnerability, and, finally, adoption of policies to overcome the vulnerability. While it is easy to understand these components separately, their interdependencies make the overall picture more complicated. Also complicating the issue is the fact that most small and medium firms do not have the capacity and resources to predict the impact of such changes on their operations, and hence, to quickly make the adjustments necessary to overcome them. The response of firms also depends on the nature of the climate risk they face, whether it is sea-level rise, or temperature rise.


Author(s):  
Irvin Alberto Mosquera ◽  
Luis Volnei Sudati Sagrilo ◽  
Paulo Maurício Videiro

Abstract This paper discusses the influence of the climate change in the long-term response of offshore structures. The case studied is a linear single-degree-of-freedom (SDOF) system under environmental load wave characterized by the JONSWAP spectrum. The wave parameter data used in the analyses were obtained from running the wind wave WaveWatch III with wind field input data derived from two Global Climate Models (GCMs): HadGEM2-ES and MRI-CGCM3 considering historical and future greenhouse emissions scenarios. The study was carried out for two locations: one in the North Atlantic and the other in Brazilian South East Coast. Environmental contours have been used to estimate the extreme long-term response. The results suggest that climate change would affect the structure response and its impact is highly depend on the structure location, the global climate model and the greenhouse emissions scenario selected.


Author(s):  
Luna Bharati ◽  
Pabitra Gurung ◽  
Priyantha Jayakody

Assessment of surface and groundwater resources and water availability for different sectors is a great challenge in Nepal mainly due to data limitations. In this study, the Soil Water Assessment Tool (SWAT) was used to simulate the hydrology and to calculate sub-basin wise water balances in the Koshi Basin, Nepal. The impacts of Climate Change (CC) projections from four GCMs (CNRM-CM3, CSIRO-Mk3.0,ECHam5 and MIROC 3.2) on the hydrology of the basin were also calculated. This paper summarizes some of the key results. The full report of the study is in preparation.The basin can be divided into the trans-mountain, central mountain, eastern mountain, eastern hill and central hill regions. Results show that current precipitation is highest in the central mountain and eastern mountain regions during both the dry and wet seasons. Water balance results showed that Actual ET as well as Runoff is also highest in the central and eastern mountain regions followed by the mid-hills. Results from climate change projections showed that average temperature will increase in the 2030’s by 0.7-0.9° Celsius. Results for 2030s projections also show that during the dry season, precipitation increases in the trans-mountain but decreases in the other regions for both A2 and B1 scenarios. During the wet season, the MarkSim projections show a decrease in precipitation in all the regions. Net water yields also increased for the trans-mountain zone during the dry season but show varying results during the monsoon. Assessment of projected future flow time series showed that there will be an increase in the number of extreme events; i.e., both low flows and large floods. There is however; a high degree of uncertainty in the projected climate data as the relative standard deviation was quite high.DOI: http://dx.doi.org/10.3126/hn.v11i1.7198 Hydro Nepal Special Issue: Conference Proceedings 2012 pp.18-22


2020 ◽  
Author(s):  
Paul Kim ◽  
Daniel Partridge ◽  
James Haywood

<p>Global climate model (GCM) ensembles still produce a significant spread of estimates for the future of climate change which hinders our ability to influence policymakers. The range of these estimates can only partly be explained by structural differences and varying choice of parameterisation schemes between GCMs. GCM representation of cloud and aerosol processes, more specifically aerosol microphysical properties, remain a key source of uncertainty contributing to the wide spread of climate change estimates. The radiative effect of aerosol is directly linked to the microphysical properties and these are in turn controlled by aerosol source and sink processes during transport as well as meteorological conditions.</p><p>A Lagrangian, trajectory-based GCM evaluation framework, using spatially and temporally collocated aerosol diagnostics, has been applied to over a dozen GCMs via the AeroCom initiative. This framework is designed to isolate the source and sink processes that occur during the aerosol life cycle in order to improve the understanding of the impact of these processes on the simulated aerosol burden. Measurement station observations linked to reanalysis trajectories are then used to evaluate each GCM with respect to a quasi-observational standard to assess GCM skill. The AeroCom trajectory experiment specifies strict guidelines for modelling groups; all simulations have wind fields nudged to ERA-Interim reanalysis and all simulations use emissions from the same inventories. This ensures that the discrepancies between GCM parameterisations are emphasised and differences due to large scale transport patterns, emissions and other external factors are minimised.</p><p>Preliminary results from the AeroCom trajectory experiment will be presented and discussed, some of which are summarised now. A comparison of GCM aerosol particle number size distributions against observations made by measurement stations in different environments will be shown, highlighting the difficulties that GCMs have at reproducing observed aerosol concentrations across all size ranges in pristine environments. The impact of precipitation during transport on aerosol microphysical properties in each GCM will be shown and the implications this has on resulting aerosol forcing estimates will be discussed. Results demonstrating the trajectory collocation framework will highlight its ability to give more accurate estimates of the key aerosol sources in GCMs and the importance of these sources in influencing modelled aerosol-cloud effects. In summary, it will be shown that this analysis approach enables us to better understand the drivers behind inter-model and model-observation discrepancies.</p>


2020 ◽  
Author(s):  
Chin Chieh Liu ◽  
Ching Pin Tung

<p>      Adaptation is an indispensable part of climate change impact, and risk assessment plays an important role between data arrangement and strategy planning. This study aims at developing a framework from risk assessment to information presentation, then applying to risk communication. This framework refers to Climate Risk Template, defining risk as to the integration of hazard, exposure and sensitivity; simultaneously, Climate Risk Template is an auxiliary tool basing on Climate Change Adaptation Six Steps(CCA6Steps), which is the systematic procedure to analyze risk and plan adaptation pathway. This study emphasized on landslide disaster as the key issue and selected community residents, roads as the protected targets. First of all, collate stimulated results of landslide potential evaluation and literature, cases, questionnaires which were probed into exposure and sensitivity. Next, establish a factors list of climate risk and giving weights to correlation factors by Entropy Method. Finally, use risk matrix to evaluate the risk value and present the results of risk assessment by infographic. For essentially helping on risk communication, this study proposes a framework to make the general public understand the causes of regional disaster risk and assists executive units to implement climate risk assessment and adaptation pathway planning. Eventually, the study will innovate a prototype of using this framework; therefore, users just have to write down the key issue, protected target and choose the composition factors of risk, then they can accomplish climate risk assessment and generate climate risk infographic by themselves.</p><p>Keywords: Climate risk template, Climate risk assessment, Risk communication, infographic</p>


Sign in / Sign up

Export Citation Format

Share Document