Distribution patterns of planted-shrubs of different restoration ages in artificial sand-fixing regions and effects on soil property in the southeastern Tengger desert

Author(s):  
Meiling Liu

<p><br>The plant density and spatial distribution in artificial vegetation is obviously initialized at the planting stage. Plants dynamics and spatial pattern may change over time as the result of interactions between individual plants and habitats, but whether this is the case for desert shrubs in artificial sand-fixing regions is largely unknown. Here we examined changes in plant density and distribution patterns of three shrubs (Artemisia ordosica Krasch., Caragana korshinskii Kom., and Hedysarum scoparium Fisch.) in different regions restored for 27, 32 and 50 years (R27, R32, R50), respectively. The vegetation analysis showed that A. ordosica were the dominated species across the 3 restoration regions. The density of A. ordosica and H. scoparium showed a significant increase from R27 to R32, then decreased in R50. However, there was no C. korshinskii survive in R27. The density of C. korshinskii was also low in R32 and R50. The variance-to-mean ratio (VMR) was used to characterize the spatial distribution patterns to fit the observed frequency distributions of densities of the three shrubs. A. ordosica and C. korshinskii all showed significantly clumped distribution in three restoration regions. For H. scoparium, it showed uniform distribution in R27 and R50, however showed clumped distribution in R32. We also quantified changes in soil physio-chemical properties in different restoration regions. The proportion of sand-sized particles in the topsoil was reduced sharply; the proportion of silt and clay increased greatly from 17.3 and 4.6 to 21.4 and 10.4%, respectively. N and K contents were not significant different among R27 (0.52 and 0.93 g/kg, respectively) and R32 (0.59 and 0.98 g/kg, respectively), but has significant differences with R50 (0.78 and 1.06 g/kg, respectively). P content and soil organic matter content gradually increased with successional age. The results showed that compared to C. korshinskii and H. scoparium, A. ordosica seems to be more suitable in revegetated desert areas. Pattern analysis suggested a successive replacement of C. korshinskii, which had low proportions of survived shrubs, by the dominant A. ordosica. The soil properties were also significantly improved after restoration. This study contributes to understanding of the distribution patterns of shrubs plants and their effects to soil property in revegetation projects in arid desert area.</p>

Author(s):  
Amita M Watkar ◽  

Soil, itself means Soul of Infinite Life. Soil is the naturally occurring unconsolidated or loose covering on the earth’s surface. Physical properties depend upon the amount, size, shape, arrangement, and mineral composition of soil particles. It also depends on the organic matter content and pore spaces. Chemical properties depend on the Inorganic and organic matter present in the soil. Soils are the essential components of the environment and foundation resources for nearly all types of land use, besides being the most important component of sustainable agriculture. Therefore, assessment of soil quality and its direction of change with time is an ideal and primary indicator of sustainable agricultural land management. Soil quality indicators refer to measurable soil attributes that influence the capacity of a soil to function, within the limits imposed by the ecosystem, to preserve biological productivity and environmental quality and promote plant, animal and human health. The present study is to assess these soil attributes such as physical and chemical properties season-wise.


2021 ◽  
Vol 11 (15) ◽  
pp. 6982
Author(s):  
Chiara Ferronato ◽  
Gilmo Vianello ◽  
Mauro De Feudis ◽  
Livia Vittori Antisari

The study of Technosols development, spatial distribution and physicochemical characteristics is becoming more and more important in the Anthropocene Era. The aim of the present study was to assess soil features and potential heavy metal release risk of soils developed on different mine tailing types after the waste disposal derived from mining activity in Central Italy. Soils were analyzed for their morphological, physical and chemical properties, and a chemical sequential extraction of heavy metals was performed. The investigated soils were classified as Technosols toxic having in some layer within 50 cm of the soil surface inorganic materials with high concentrations of toxic elements. Our findings showed that the bioavailability of potentially toxic element concentrations in the soil changed according to the origin of the mine tailing. However, because of the acidic pH, there is a serious risk of metals leaching which was reduced where the soil organic matter content was higher.


Agriculture ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 727
Author(s):  
Yingpeng Fu ◽  
Hongjian Liao ◽  
Longlong Lv

UNSODA, a free international soil database, is very popular and has been used in many fields. However, missing soil property data have limited the utility of this dataset, especially for data-driven models. Here, three machine learning-based methods, i.e., random forest (RF) regression, support vector (SVR) regression, and artificial neural network (ANN) regression, and two statistics-based methods, i.e., mean and multiple imputation (MI), were used to impute the missing soil property data, including pH, saturated hydraulic conductivity (SHC), organic matter content (OMC), porosity (PO), and particle density (PD). The missing upper depths (DU) and lower depths (DL) for the sampling locations were also imputed. Before imputing the missing values in UNSODA, a missing value simulation was performed and evaluated quantitatively. Next, nonparametric tests and multiple linear regression were performed to qualitatively evaluate the reliability of these five imputation methods. Results showed that RMSEs and MAEs of all features fluctuated within acceptable ranges. RF imputation and MI presented the lowest RMSEs and MAEs; both methods are good at explaining the variability of data. The standard error, coefficient of variance, and standard deviation decreased significantly after imputation, and there were no significant differences before and after imputation. Together, DU, pH, SHC, OMC, PO, and PD explained 91.0%, 63.9%, 88.5%, 59.4%, and 90.2% of the variation in BD using RF, SVR, ANN, mean, and MI, respectively; and this value was 99.8% when missing values were discarded. This study suggests that the RF and MI methods may be better for imputing the missing data in UNSODA.


2017 ◽  
pp. 179-183
Author(s):  
Judit Szűcsné Szolomájer ◽  
Marianna Makádi ◽  
Ibolya Demeter ◽  
Attila Tomócsik ◽  
Tibor Aranyos ◽  
...  

Composting of sewage sludges makes easier the utilization of sewage sludge in the agriculture and the composts in good quality could increase the nutrient content of soil. Due to the composting process, the sewage sludge composts with high organic matter content can be utilized in the same way as other composts or farmyard manure.Composts produced in different ways have different effects on the physical, chemical and biological properties of different soils, although their positive effects have already proved in the literature. In our study the effects of composts from different composting processes were investigated in soil-plant systems. The different physical and chemical properties of the two examined soil types (arenosol and chernozem)strongly influenced the nutrient supply capacity of composts which could be characterized by the growth of ray-grass as a test plant in the pot experiment. In this work we examined the effects of three different composts on the green weight of plants on the fourth and eighth weeks after the treatment and sowing.


2021 ◽  
Vol 30 (2) ◽  
pp. 141-149
Author(s):  
Tasnim Zannat ◽  
Farhana Firoz Meem ◽  
Rubaiat Sharmin Promi ◽  
Umme Qulsum Poppy ◽  
MK Rahman

Twelve soil and twelve leaf samples were collected from twelve litchi (Litchi chinensis Sonn.) orchards from different locations of Dinajpur to evaluate some physico-chemical properties and nutrient status of soil, and concentration of nutrients in litchi leaf. The pH of the soil varied from very strong acidic to medium acidic (4.8 - 5.7), organic matter content varied from 0.84 - 1.88%, EC varied from 302.4 - 310.2 μS/cm. The dominant soil textural class was clay loam. The average particle density was 2.49g/cm3. Total N, P, K and S in soils were 0.053 - 0.180%, 0.02 - 0.07%, 0.046 - 0.370 meq/100 g, and 0.015 - 0.028%, respectively. Available N, P, K, S, Zn, Fe, Mn and B in soils 30.40 - 57.8 mg/kg, 10.53 - 14.33 mg/kg, 0.03 - 0.32 meq/100 g, 20.03-34.80 mg/kg, 0.68-1.50 μg/g, 31.8 - 41.5 μg/g, 6.75 - 7.39 μg/g and 0.25-0.51 μg/g, respectively. The concentration of total N, P, K, S, Zn and Mn in the leaf were 1.74 - 2.20%, 0.11 - 0.188%, 0.104- 0.198%, 0.129 - 0.430%, 12 - 14 μg/g and 30 - 74 μg/g, respectively. The overall results indicated that the fertility status of the soils under the litchi plantation in the Dinajpur area are medium fertile. So, farmers could be advised to grow litchi plants after applying amendments to the soils to improve the physico-chemical properties in the Dinajpur area of Bangladesh. Dhaka Univ. J. Biol. Sci. 30(2): 141-149, 2021 (July)


2019 ◽  
Vol 78 (1) ◽  
pp. 35-45 ◽  
Author(s):  
Beata Bosiacka ◽  
Helena Więcław ◽  
Paweł Marciniuk ◽  
Marek Podlasiński

Abstract The vegetation of protected salt meadows along the Baltic coast is fairly well known; however, dandelions have been so far treated as a collective species. The aim of our study was to examine the microspecies diversity of the genus Taraxacum in Polish salt and brackish coastal meadows and to analyse soil property preferences of the dandelion microspecies identified. In addition, we analysed the relations between soil properties and vegetation patterns in dandelion-supporting coastal meadows (by canonical correspondence analysis). The salt and brackish meadows along the Polish Baltic coast we visited were found to support a total of 27 dandelion microspecies representing 5 sections. Analysis of vegetation patterns showed all the soil parameters (C:N ratio, organic matter content, pH, concentration of Mg, P, K, electrolytic conductivity of the saturated soil extract ECe) to explain 32.07% of the total variance in the species data. The maximum abundance of most dandelion microspecies was associated with the highest soil fertility, moderate pH values and organic matter content, and with the lowest magnesium content and soil salinity. The exceptions were T. latissimum, T. stenoglossum, T. pulchrifolium and T. lucidum the occur-rence of which was related to the lowest soil fertility and the highest salinity. In addition, several microspecies (T. leptodon, T. gentile, T. haematicum, T. fusciflorum and T. balticum) were observed at moderate C:N ratios and ECe. Four other microspecies (T. infestum, T. cordatum, T. hamatum, T. sertatum) occurred at the lowest pH and organic matter content. The information obtained increases the still insufficient body of knowledge on ecological spectra of individual dandelion microspecies, hence their potential indicator properties.


2013 ◽  
Vol 284-287 ◽  
pp. 1340-1344 ◽  
Author(s):  
Felix N.L. Ling ◽  
Khairul Anuar Kassim ◽  
Ahmad Tarmizi Abdul Karim ◽  
Kenny Tiong ◽  
C.K. Tan

Johore, the southern part of west peninsular Malaysia is found to be rich in peat soil, especially at the Pontian & Batu Pahat district. The physico-chemical properties of the peat soil at the region had been extensively studied by various researches but limited studies were based on the interface layer of peat soil and non organic soil. The behaviour of the interface layer soil is believed to be governed by its organic matter content. Three locations of Batu Pahat, namely Parit Nipah, Parit Sidek & Batu Puteh which are difference in terms of geography setting were chosen in this case study. The main objective of this study is to characterize the geochemistry properties of the organic soil as a guide of its engineering behaviour. The soil specimens were collected using peat auger and undisturbed sampler. The organic contents and types of organic were determined in laboratory based on Loss on Ignition at 440c, carbon content and its molecular functional group. The pH, sulphate content, chloride content and cation exchange capacity (CEC) of the organic soil were also determined as a guide of its potential stabilization by using chemical stabilizer. X-ray fluorescence (XRF) and Fourier Transform Infrared (FTIR) were utilized to determine the bulk chemical composition of the soil and its functional group, respectively. The findings of this study are expected to give a better overview of organic soil which enable designer to have a better understanding when dealing with this kind of material.


2017 ◽  
Vol 2017 ◽  
pp. 1-16
Author(s):  
Kourtel Ghanem Nadra ◽  
Kribaa Mohammed ◽  
El Hadef El Okki Mohammed

Our objective is to study interaction between physical and chemical properties of soils and their earthworm community characteristics in different areas irrigated by wastewaters and well waters. The fields have different topography and agricultural practices conditions and are located in two regions of Batna department (Eastern Algeria). Both regions are characterized by a semiarid climate with cold winters and Calcisol soils. Nine fields were subject of this study. Three of these fields are located in Ouled Si Slimane region whose irrigation is effectuated by natural waters of Kochbi effluent. The other six fields are located at edges of Wed El Gourzi, effluent from Batna city, and partially treated through water treatment station. The best rates of water saturation and infiltration as well as abundance of earthworms were recorded at sites characterized by irrigation with wastewaters downstream of El Gourzi effluent. PCA characterizes two major groups: a group of hydrodynamic infiltration parameters and structural index stability of soil, explained by fields irrigated with wastewaters downstream of El Gourzi effluent. This group includes chemical characteristics: pH and electric conductivity. The second group is the characteristics of earthworms and includes organic matter content, active limestone levels, and Shannon Biodiversity Index.


Author(s):  
Baoyang Sun ◽  
Feipeng Ren ◽  
Wenfeng Ding ◽  
Guanhua Zhang ◽  
Jinquan Huang ◽  
...  

Freeze-thaw erosion occurs primarily at high latitudes and altitudes. Temperature controlled freeze-thaw events dislodge soil particles and serve as a catalyst for erosion. This review paper provided an overview of the effects of freeze-thaw on soil properties and water erosion. The process of freeze-thaw cycles results in temporary and inconsistent changes in the soil moisture, and affects the soil’s mechanical, physical and chemical properties, such as the soil moisture content, porosity, bulk density, aggregates stability, shear strength and organic matter content and so on. The variation trend and range of the soil properties were related to the soil texture, water content and freeze-thaw degree. Furthermore, the soil erosion was affected by the freeze-thaw processes, as thawing and water erosion reinforce each other. However, research of different experimental conditions on indoor simulations have numerous limitations compared with field experiments. The use of indoor and field experiments to further reveal the freeze-thaw effect on the soil erosion would facilitate improved forecasting.


Nukleonika ◽  
2018 ◽  
Vol 63 (4) ◽  
pp. 105-111
Author(s):  
Marcin Stobiński ◽  
Filip Jędrzejek ◽  
Barbara Kubica

Abstract The aim of the research is to obtain preliminary information about the spatial distribution of gamma radionuclides in the soils taken from the Ojców National Park with emphasis on the behaviour of artificial radionuclides, with 137Cs as a representative. The natural radionuclides 40K, 226Ra (uranium series), and 228Th (thorium series), which are considered as background radiation, were also determined. In total, 18 soil samples were collected during the summer periods in 2015-2017, while the sampling points were selected with respect to differences in rainfall and local topography gradient. The method was based on gamma-ray spectrometry performed on high-purity germanium (HPGe) gamma detector (relative efficiency 34%). 137Cs was mostly deposited in the top soil layers, with activity in the range of 27.9÷586.6 Bq·kg-1. We found strong positive correlation of the 137Cs activity with the soil organic matter content, and at the same time, its dependence on the rainfall amount. Consequently, the soil types and local climate can control the spatial distribution of 137Cs on a small spatial scale. The quantity of natural radionuclides was highly similar in all samples with the following mean values: 38.0 Bq·kg-1for 228Th, 33.1 Bq·kg-1for 226Ra, and 479.9 Bq·kg-1for 40K.


Sign in / Sign up

Export Citation Format

Share Document