Decomposing in-situ grown switchgrass roots as hotspots of microbial activity and N2O emission: the combination of dual-isotope labeling and zymography

Author(s):  
Kyungmin Kim ◽  
Jenie Gil ◽  
Nathaniel Ostrom ◽  
Hasand Gandhi ◽  
Maxwell Oerther ◽  
...  

<p>High temporal and spatial variability of nitrous oxide (N<sub>2</sub>O) emission from soils has been a challenge for the systematic prediction of global climate change. It is attributed to multiple hotspots occurring simultaneously and affecting the N dynamics cumulatively on an ecosystem scale. Understanding the mechanisms and contributing factors of N<sub>2</sub>O emission in single hotspots is a prerequisite to overcoming this problem.</p><p>We investigated the decomposing switchgrass roots as N<sub>2</sub>O hotspots, using isotope dual-labeling (<sup>15</sup>N and <sup>13</sup>C) and zymography. Our main objectives were i) to quantify the contribution of decomposing roots to N<sub>2</sub>O emission along with the N contents in the soil (total, organic, and inorganic N) and microbial pools, and ii) to differentiate the extracellular enzyme activity in decomposing roots from the bulk soil, and test if the ‘spatially differentiated’ hotspot enzyme activity indeed related to ‘isotopically differentiated’ hotspot N<sub>2</sub>O emissions. We treated the soils of the same origin to have different moisture contents (40% and 70% water-filled pore space, WFPS) and pore size distributions (dominant pores of >30 Ø and < 10 mm Ø, referred to as coarse and fine soil), to evaluate how these variables change the contribution of decomposing roots to the N<sub>2</sub>O production.</p><p>Our results showed that up to 0.4 % of the root driven N can be emitted as N<sub>2</sub>O gas, only within 21 days of the decomposition. Approximately 21 ~35% of root N was transformed to dissolved organic N, while less than 1 % of the root N remained as ammonium (NH<sub>4</sub><sup>+</sup>) and nitrate (NO<sub>3</sub><sup>-</sup>) during the incubation. Decreasing NH<sub>4</sub><sup>+</sup> and increasing NO<sub>3</sub><sup>-</sup> suggested nitrification. Surprisingly, both inorganic and organic N content was greater in coarse soil, which likely led to intense hotspots of enzyme activity and N<sub>2</sub>O emission. However, there was no difference in microbial biomass between the soil materials. Higher chitinase activity and relatively large pores in coarse soils suggest that the fungal activity was higher in coarse soils compared to the fine soils. Root chitinase activity was positively correlated with the root driven N<sub>2</sub>O emission rate (p< 0.01, R<sup>2</sup>=0.22), supporting that the microbial hotspot formed near the root is the hotspots of N<sub>2</sub>O emission.</p><p>Our study showed that the intensity of root driven N<sub>2</sub>O hotspots can highly depend on the soil physical characteristics, being mediated by decomposed substances, and enzyme activity. Tracking the fate of N during the plant root decomposition can provide a new perspective on the strategies to minimize N<sub>2</sub>O emissions in bioenergy systems.</p>

1980 ◽  
Vol 60 (3) ◽  
pp. 497-509 ◽  
Author(s):  
G. C. TOPP ◽  
W. D. ZEBCHUK ◽  
J. DUMANSKI

The in situ saturated hydraulic conductivities of nine soil units were measured and cores of the same soil were taken to the laboratory for determination of desorption water capacity relationships. Hydraulic conductivities for the coarse- and fine-textured soils were equivalent and higher than that for medium-textured soils. However, the coarse- and fine-textured soils showed measurably different desorption curves for each of three soil units tested. Variability of duplicate measurements of hydraulic conductivity at sites were found to be considerably less than that of the soil unit as a whole. The highly variable in situ hydraulic conductivities resulted in separations of two groups of soil with significantly different values. A third intermediate group was not significantly different from the other two. The desorption curves were discussed in relation to differences in pore size distributions, identifying proportions of the pore space attributable to structural pores and to textural pores.


2018 ◽  
Vol 3 (01) ◽  
pp. 62-69
Author(s):  
Eka Corneliyawati ◽  
Massora Massora ◽  
Khikmah Khikmah ◽  
As’ad Syamsul Arifin

The rhizosphere is the zone of soil surrounding a plant root where plant roots, soil and the soil biota interact with each other. Chitinolytic fungi has been effectively used in biological control agens. The chitinase activity causes lysis of the fungi cell wall pathogen. The aim of the research was to find optimization of activity chitinase enzyme from rhizosphere soil was conducted in vitro. Optimal growth chitinase production for TKR3 fungi isolate were concentration of chitin 0,2% (b/v), pH 5,5, temperature 30ºC, agitation 150 rpm and incubation time at four days. The optimum yield of chitinase production is influenced by fungal species and environmental conditions.


2015 ◽  
Vol 6 (2) ◽  
pp. 1
Author(s):  
Musiliyu Oladipupo Mustafa ◽  
Olubusola Temitope Adeoye ◽  
Folorunso Ishaq Abdulalzeez ◽  
Olukayode Dare Akinyemi

<p>Deforestation occurs around the world; though tropical rainforests are particularly targeted, it is considered to be one of the contributing factors to global climate change. While Nigeria is probably best known today for its oil deposits, according to the World Resources Institute, Nigeria is home to 4,715 different types of plant species, and over 550 species of breeding birds and mammals, making it one of the most ecologically vibrant places of the planet. It is also one of the most populous country with appalling deforestation record. This situation is hence making our ecosystems, biodiversity, agriculture and other natural endowments highly unsecured. The Forest provides excellent resources for bees and beekeeping, and bees are a vital part of forest ecosystems. Bees are essential for sustaining our environment because they</p><p>Pollinate flowering plants and conserves biological biodiversity along with their products (honey, propolis, bee wax, royal jelly and bee venom) which are beneficial to man. Conservation of the forest is therefore imperative for sustainable beekeeping. The study reviews the different causes of climate change and how they affect different natural forest activities which are weather-dependent. Also how climate change and other causes (both natural and man-made) lead to deforestation, which in turn distort sustainable honey production in Nigeria. Different sustainable measures hoped to alleviate the effects of climate change and deforestation where also discussed. </p>


2017 ◽  
Vol 37 (1) ◽  
Author(s):  
洪慧滨 HONG Huibin ◽  
林成芳 LIN Chengfang ◽  
彭建勤 PENG Jianqin ◽  
陈岳民 CHEN Yuemin ◽  
魏翠翠 WEI Cuicui ◽  
...  

2020 ◽  
Author(s):  
Martin Lanzendörfer

&lt;p&gt;In an endeavour to describe quantitatively the water flow and solute transport in soils and other heterogeneous porous media, various different approaches have been introduced in the past decades, including double porosity, double permeability and other multiple-continua approaches. Recently, a promising methodology to identify experimentally the pore structure of porous media has been proposed, where a discrete distribution of effective pore radii is established based on saturated flow experiments with non-Newtonian (shear-thinning) fluids, as described by Abou Najm and Atallah (2016) and in other works. In this particular concept, the porous media is idealised as a bundle of capillaries with only a reasonably small number of distinct values of their radii. This allows to identify the pore radii and the contributions of the corresponding pore groups to the total flow by performing and evaluating a reasonable number of flow experiments.&lt;/p&gt;&lt;p&gt;In an attempt to understand better the relation of the effective discrete pore radii distribution concept (with a given number of distinct pore radii allowed) to the structure of the porous media, we perform numerical experiments with other idealised geometries of the pore space. The saturated flow experiments with shear-thinning fluids are simulated by finite element method and then, based on the resulting flow, the discrete pore radii distributions are established and compared with the original geometry. For simplicity, we stick to one-dimensional models analogous to Poiseuille or Hagen-Poiseuille flow. The idea is to examine pore size distributions that are continuous rather than discrete, while keeping the advantage of a perfectly controlled and comprehensible idealised geometry. This &lt;em&gt;in-silico&lt;/em&gt; approach may later serve as a supporting tool for studying various aspects of the addressed experimental methodology, e.g., in taking into account realistic non-Newtonian rheology, proposing an optimal set of experiments, or contemplating links with solute transport models.&lt;/p&gt;


2000 ◽  
Vol 15 (11) ◽  
pp. 2314-2321 ◽  
Author(s):  
Noboru Yoshikawa ◽  
Singo Funahashi ◽  
Shoji Taniguchi ◽  
Atsushi Kikuchi

Al/Al2O3 composites were fabricated by a displacement reaction between SiO2 and molten Al. In this study, fabrication of Al/Al2O3 composites was attempted by means of reactive infiltration to provide variation of their mechanical properties. SiO2 preforms having various porosities and pore size distributions were prepared by sintering the powder at different temperatures between 1273 and 1723 K. Molten Al was infiltrated at 1373 K without application of pressure. Infiltration kinetics were studied and the microstructures of the composite bodies were observed by means of scanning electron microscopy (with energy dispersive x-ray microanalysis), wave dispersive x-ray microanalysis, and x-ray diffractions. The infiltrated specimens were mainly composed of Al and α–Al2O3 phases, and the Si content was less than 5 at.%. Volume fraction of Al phase in the composite bodies was not altered very much with the porosities of the SiO2 preforms because of the difficulty in filling out the entire pore space. Properties and microstructures of Al/Al2O3 composites, however, were dependent on the sintering temperature of the SiO2 preforms. In the case of low sintering temperature, a thick Al channel existed, which deformed upon compression. In the case of high sintering temperature, the microstructure became homogeneous and had thinner Al channels. The composite bodies became brittle. The deformation behavior was shown to be changed from ductile to brittle as an increase of the sintering temperature of the preforms.


2018 ◽  
Author(s):  
Yujin Zhang ◽  
Minna Ma ◽  
Huajun Fang ◽  
Dahe Qin ◽  
Shulan Cheng ◽  
...  

Abstract. The contributions of long-lived nitrous oxide (N2O) to the global climate and environment have received increasing attention. Especially, atmospheric nitrogen (N) deposition has substantially increased in recent decades due to extensive use of fossil fuels in industry, which strongly stimulates the N2O emissions of the terrestrial ecosystem. Several models have been developed to simulate N2O emission, but there are still large differences in their N2O emission simulations and responses to atmospheric deposition over global or regional scales. Using observations from N addition experiments in a subtropical forest, this study compared six widely-used N2O models (i.e. DayCENT, DLEM, DNDC, DyN, NOE, and NGAS) to investigate their performances for reproducing N2O emission, and especially the impacts of two types of N additions (i.e. ammonium and nitrate: NH4+ and NO3−, respectively) and two levels (low and high) on N2O emission. In general, the six models reproduced the seasonal variations of N2O emission, but failed to reproduce relatively larger N2O emissions due to NH4+ compared to NO3− additions. Few models indicated larger N2O emission under high N addition levels for both NH4+ and NO3−. Moreover, there were substantial model differences for simulating the ratios of N2O emission from nitrification and denitrification processes due to disagreements in model structures and algorithms. This analysis highlights the need to improve representation of N2O production and diffusion, and the control of soil water-filled pore space on these processes in order to simulate the impacts of N deposition on N2O emission.


2020 ◽  
Author(s):  
Maria Caus ◽  
◽  
Tatiana Calugaru-Spataru ◽  

The activity of chitinases in protein extracts, separated from the male and female leaves of Actinidia arguta L., healthy and infested plants by Trialeurodes vaporariorum, was analyzed. We found that there were no significant differences in chitinase activity in both male and female leaf extracts of healthy plants. But the enzyme activity in female leaves of infested plants was twice as high as in healthy plants. While in the male leaves, less attacked by the respective pests, only a tendency towards the increase of chitinase activity was observed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xinping Liu ◽  
Yongqing Luo ◽  
Li Cheng ◽  
Hongjiao Hu ◽  
Youhan Wang ◽  
...  

Plant fine root turnover is a continuous process both spatially and temporally, and fine root decomposition is affected by many biotic and abiotic factors. However, the effect of the living roots and the associated mycorrhizal fungal mycelia on fine root decomposition remains unclear. The objective of this study is to explore the influence of these biotic factors on fine root decomposition in a semi-arid ecosystem. In this study, we investigated the effect of fine roots and mycelia on fine root decomposition of a pioneer shrub (Artemisia halodendron) in Horqin sandy land, northeast China, by the ingrowth core method combined with the litterbag method. Litterbags were installed in cores. Results showed that core a allowed the growth of both fine roots and mycelia (treatment R + M), core b only allowed the growth of mycelia (treatment M), and in core c the fine root and mycelia growth were restricted and only bulk soil was present (treatment S). These findings suggest that the process of root decomposition was significantly affected by the living roots and mycelia, and carbon (C) and nitrogen (N) concentration dynamics during root decomposition differed among treatments. Mycelia significantly stimulated the mass loss and C and N release during root decomposition. Treatment R + M significantly stimulated the accumulation of soil total C, total N, and organic N under litterbags. The mycelia significantly stimulated the accumulation of the inorganic N (ammonium-N and nitrate-N) but the presence of fine roots weakened nitrate-N accumulation. The presence of living roots and associated mycelia strongly affected the process of root decomposition and matter release in the litter-soil system. The results of this study should strengthen the understanding of root-soil interactions.


2001 ◽  
Vol 48 (3) ◽  
pp. 775-782 ◽  
Author(s):  
N Yilmaz ◽  
A B Erbağci ◽  
A S Aynacioğlu

Substrates for CYP2C9 include fluoxetine, phenytoin, warfarin, losartam and numerous nonsteroidal anti-inflammatory drugs. Polymorphisms in the coding region of the CYP2C9 gene produce variants at amino-acid residues 144 Arg/Cys and 359 Ile/Leu of the CYP2C9 protein. Individuals homozygous for Leu359 have markedly diminished metabolic capacities for most CYP2C9 substrates, the frequency of this allele is, however, rather low. Consistently with the modulation of enzyme activity by genetic and other factors, wide interindividual variability occurs in the elimination and/or dosage requirements of prototypic CYP2C9 substrates. The polymorphic enzyme CYP2C9 takes part in the metabolism of alkylating agents and polycyclic aromatic hydrocarbons like benzo(a)pyrene, a carcinogen present in tobacco smoke. Although the impact of impaired enzyme activity in metabolism of carcinogens and procarcinogens has not been fully defined, an association of CYP2C9 variant alleles to DNA adduct levels in lung tissues as well as to lung cancer risk have been reported. In this study 64 healthy subjects (44M/22F) were analysed for CYP2C9 genotype with PCR-RFLP and for serum carcinoembryonic antigen (CEA), alpha-fetoprotein (AFP), CA 19-9, CA 15-3, ferritin, IL-6, IL-8 concentrations by chemiluminescence or electrochemiluminescence methods. CYP2C9*1 was found to be the most prevalent allele and CYP2C9*1/CYP2C9*1 was the most frequent genotype represented in 64% of the population in southeastern Anatolia (Gaziantep). Although slight differences in serum tumour marker and cytokine concentrations were observed for CYP2C9 genotypes the differences were statistically insignificant (P > 0.05). This could be due to the complexity of the role of CYP2C9 in benzo(a)pyrene metabolism as well as from other contributing factors like interindividual variability of diverse enzymes participating in the same metabolic pathway, unequal expression of the variant alleles and differences in exposure to carcinogens. However, determination of CYP2C9 phenotypes in a larger group of subjects might clarify these slight differences.


Sign in / Sign up

Export Citation Format

Share Document