Relationship between the formation of flow paths and elution behavior with water flow through the soil column

Author(s):  
Kyouhei Tsuchida ◽  
Kengo Nakamura ◽  
Monami Kondo ◽  
Noriaki Watanabe ◽  
Takeshi Komai

<p>The transport phenomenon of pollutants in soil is complicated because of the formation of the flow path in soil. In this study, the relationship between the flow path in the soil and the elution behavior of various components was evaluated by the column tests with different filling methods to change the flow path in the column. The flow path in the column was visualized by using potassium iodide aqueous solution and X-ray CT. Our result shows that the elution behavior of the easily eluted components was not significantly affected by the flow path in the column. In addition, the cation more eluted when the flow path spread throughout the column than when the flow path was intensive. This suggests that eluted components may be affected by anions in soil. From these results, it was found that the elution behavior of components is influenced by the flow path in the column and some were not, and when it was influenced, the degree of influence is different depending on the components.</p>

Author(s):  
Garrison Sposito

Adsorption experiments involving soil particles typically are performed in a sequence of three steps: (1) reactio of an adsorptive (ion or molecule) with a soil contacting an aqueous solution of known composition under controlled temperature and applied pressure for a prescribed period of time, (2) separationof the wet soil slurry from the supernatant aqueous solution, and (3) quantitationof the ion or molecule of interest, both in the aqueous solution and in the separated soil slurry along with its entrained soil solution. The reaction step can be performed in either a closed system (batch reactor) or an open system (flow-through reactor), and it can proceed over a time period that is either relatively short (to investigate adsorption kinetics) or very long (to investigate adsorption equilibration). The separation step is similarly open to choice, with centrifugation, filtration, or gravitational settling being conventional methods to achieve separation. The quantitation step, in principle, should be designed not only to determine the moles of adsorbate and unreacted adsorptive, but also to verify whether unwanted side reactions, such as precipitation of the adsorptive or dissolution of the adsorbent, have influenced the experiment. After reaction between an adsorptive i and a soil adsorbent, the moles of i adsorbed per kilogram of dry soil is calculated with the standard equation ni ≡ niT − Mwmi where niT is the total moles of species i per kilogram dry soil in a slurry (batch process) or a soil column (flow-through process), Mw is the gravimetric water content of the slurry or soil column (measured in kilograms water per kilogram dry soil), and mi is the molality (moles per kilogram water) of species i in the supernatant solution (batch process) or effluent solution (flow-through process). Equation 8.1 defines the surface exces, ni, of an ion or molecule adsorptive that has become an adsorbate. Formally, ni is the excess number of moles of i per kilogram soil relative to its molality in the supernatant solution. As mentioned in Section 7.2, this surface excess may be a positive, zero, or negative quantity.


2016 ◽  
Vol 1 (3) ◽  
pp. 138-144
Author(s):  
Ina Edwina ◽  
Rista D Soetikno ◽  
Irma H Hikmat

Background: Tuberculosis (TB) and diabetes mellitus (DM) prevalence rates are increasing rapidly, especially in developing countries like Indonesia. There is a relationship between TB and DM that are very prominent, which is the prevalence of pulmonary TB with DM increased by 20 times compared with pulmonary TB without diabetes. Chest X-ray picture of TB patients with DM is atypical lesion. However, there are contradictories of pulmonary TB lesion on chest radiograph of DM patients. Nutritional status has a close relationship with the morbidity of DM, as well as TB.Objectives: The purpose of this study was to determine the relationship between the lesions of TB on the chest radiograph of patients who su?er from DM with their Body Mass Index (BMI) in Hasan Sadikin Hospital Bandung.Material and Methods: The study was conducted in Department of Radiology RSHS Bandung between October 2014 - February 2015. We did a consecutive sampling of chest radiograph and IMT of DM patients with clinical diagnosis of TB, then the data was analysed by Chi Square test to determine the relationship between degree of lesions on chest radiograph of pulmonary TB on patients who have DM with their BMI.Results: The results showed that adult patients with active pulmonary TB with DM mostly in the range of age 51-70 years old, equal to 62.22%, with the highest gender in men, equal to 60%. Chest radiograph of TB in patients with DM are mostly seen in people who are obese, which is 40% and the vast majority of lesions are minimal lesions that is equal to 40%.Conclusions: There is a signifcant association between pulmonary TB lesion degree with BMI, with p = 0.03


2010 ◽  
Vol 6 (1) ◽  
pp. 891-896
Author(s):  
Manel Halouani ◽  
M. Dammak ◽  
N. Audebrand ◽  
L. Ktari

One nickel 1,4-cyclohexanedicarboxylate coordination polymers, Ni2 [(O10C6H4)(COO)2].2H2O  (I), was hydrothermally synthesized from an aqueous solution of Ni (NO3)2.6H2O, (1,4-CDC) (1,4-CDC = 1,4-cyclohexanedicarboxylic acid) and tetramethylammonium nitrate. Compound (I) crystallizes in the monoclinic system with the C2/m space group. The unit cell parameters are a = 20.1160 (16) Å, b = 9.9387 (10) Å, c = 6.3672 (6) Å, β = 97.007 (3) (°), V= 1263.5 (2) (Å3) and Dx= 1.751g/cm3. The refinement converged into R= 0.036 and RW = 0.092. The structure, determined by single crystal X-ray diffraction, consists of two nickel atoms Ni (1) and Ni (2). Lots of ways of which is surrounded by six oxygen atoms, a carboxyl group and two water molecules.


Author(s):  
Jiwei Zhang ◽  
Jingjing Xu ◽  
Shuaixia Liu ◽  
Baoxiang Gu ◽  
Feng Chen ◽  
...  

Background: Coal gangue was used as a catalyst in heterogeneous Fenton process for the degradation of azo dye and phenol. The influencing factors, such as solution pH gangue concentration and hydrogen peroxide dosage were investigated, and the reaction mechanism between coal gangue and hydrogen peroxide was also discussed. Methods: Experimental results showed that coal gangue has the ability to activate hydrogen peroxide to degrade environmental pollutants in aqueous solution. Under optimal conditions, after 60 minutes of treatment, more than 90.57% of reactive red dye was removed, and the removal efficiency of Chemical Oxygen Demand (COD) up to 72.83%. Results: Both hydroxyl radical and superoxide radical anion participated in the degradation of organic pollutant but hydroxyl radical predominated. Stability tests for coal gangue were also carried out via the continuous degradation experiment and ion leakage analysis. After five times continuous degradation, dye removal rate decreased slightly and the leached Fe was still at very low level (2.24-3.02 mg L-1). The results of Scanning Electron Microscope (SEM), energy dispersive X-Ray Spectrometer (EDS) and X-Ray Powder Diffraction (XRD) indicated that coal gangue catalyst is stable after five times continuous reuse. Conclusion: The progress in this research suggested that coal gangue is a potential nature catalyst for the efficient degradation of organic pollutant in water and wastewater via the Fenton reaction.


1976 ◽  
Vol 31 (6) ◽  
pp. 737-748 ◽  
Author(s):  
Karl-Heinz Tytko

Possible structures and the pertinent reaction pathways for the polymetalate ion present in a slightly soluble polymetalate having the analytical formula A2O · 2 MOs have been derived on the basis of theoretical considerations. Structure and kind of combination of the tetrameric units of one of the possibilities are in agreement with the results of X-ray structure analyses. First the previously proposed planar tetrametalate ion [M4O12(OH)4]4--is formed by stepwise aggregation according to an addition mechanism. This species undergoes a rearrangement of the coordination sphere of two of the M atoms and is then subject to a polycondensation resulting in a polytetrametalate chain, [M4O144-]n.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 720
Author(s):  
Do Tra Huong ◽  
Nguyen Van Tu ◽  
Duong Thi Tu Anh ◽  
Nguyen Anh Tien ◽  
Tran Thi Kim Ngan ◽  
...  

Fe-Cu materials were synthesized using the chemical plating method from Fe powder and CuSO4 5% solution and then characterized for surface morphology, composition and structure by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The as-synthesized Fe-Cu material was used for removal of phenol from aqueous solution by internal microelectrolysis. The internal electrolysis-induced phenol decomposition was then studied with respect to various parameters such as pH, time, Fe-Cu material weight, phenol concentration and shaking speed. The optimal phenol decomposition (92.7%) was achieved under the conditions of (1) a pH value of phenol solution of 3, (2) 12 h of shaking at the speed of 200 rpm, (3) Fe-Cu material weight of 10 g/L, (4) initial phenol concentration of 100.98 mg/L and (5) at room temperature (25 ± 0.5 °C). The degradation of phenol using Fe-Cu materials obeyed the second-order apparent kinetics equation with a reaction rate constant of k of 0.009 h−1L mg−1. The optimal process was then tested against real coking wastewater samples, resulting in treated wastewater with favorable water indicators. Current findings justify the use of Fe-Cu materials in practical internal electrolysis processes.


Author(s):  
Elena Gonzalez Rodriguez ◽  
Pedro Marques-Vidal ◽  
Bérengère Aubry-Rozier ◽  
Georgios Papadakis ◽  
Martin Preisig ◽  
...  

AbstractSarcopenia, similar to hypercortisolism, is characterized by loss of muscle mass and strength. Cortisol circadian rhythm changes with aging (blunted late-day nadir values) were suggested to contribute to this decline. We aimed to explore the relationship between diurnal salivary cortisol values and sarcopenia diagnosis and its components in postmenopausal women. This is a cross-sectional study within the OsteoLaus population-based cohort in Lausanne (Switzerland). Participants had a body composition assessment by dual X-ray absorptiometry (DXA), a grip strength (GS) measure, and salivary cortisol measures (at awakening, 30 min thereafter, 11 AM (sc-11AM) and 8 PM (sc-8PM)). Associations between salivary cortisol and sarcopenia diagnosed by six different criteria (based on appendicular lean mass (ALM) assessed by DXA, and muscle strength by GS), and its components, were analyzed. 471 women aged > 50 years (63.0 ± 7.5) were included. Various definitions identified different participants as sarcopenic, who consistently presented higher salivary cortisol at 11 AM and/or 8 PM. There were no associations between salivary cortisol levels and ALM measures, either absolute or after correction to height squared (ALM index) or body mass index. GS was inversely correlated to sc-11AM (r = − 0.153, p < 0.001) and sc-8PM (r = − 0.118, p = 0.002). Each 10 nmol/l increase of sc-11AM, respectively sc-8PM, was associated with a GS decrease of 1.758 (SE 0.472) kg, respectively 2.929 (SE 1.115) kg. In postmenopausal women, sarcopenia is associated with higher salivary cortisol levels at 11 AM and 8 PM. An increase of daily free cortisol levels in the physiological range could participate to sarcopenia development by decreasing muscle function in postmenopausal women.


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 310
Author(s):  
Lars Lehmann ◽  
Dominik Höhlich ◽  
Thomas Mehner ◽  
Thomas Lampke

Thick Cu−Sn alloy layers were produced in an [EMIM]Cl ionic-liquid solution from CuCl2 and SnCl2 in different ratios. All work, including the electrodeposition, took place outside the glovebox with a continuous argon stream over the electrolyte at 95 °C. The layer composition and layer thickness can be adjusted by the variation of the metal-salts content in the electrolyte. A layer with a thickness of up to 15 µm and a copper content of up to ωCu = 0.86 was obtained. The phase composition was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray fluorescence (XRF). Furthermore, it was found that the relationship between the alloy composition and the concentration of the ions in the electrolyte is described as an irregular alloy system as according to Brenner. Brenner described such systems only for aqueous electrolytes containing complexing agents such as cyanide. In this work, it was confirmed that irregular alloy depositions also occur in [EMIM]Cl.


Sign in / Sign up

Export Citation Format

Share Document