Tracing the Evolution of Slab Fluids during Progressive Subduction: Insights from Serpentinite Mud Volcanoes in the Mariana Forearc

Author(s):  
Catriona D. Menzies ◽  
Olivier Sissmann ◽  
Jeffrey G. Ryan ◽  
C. Geoff Wheat ◽  
Adrian J. Boyce ◽  
...  

<p>Geological processes in subduction zones strongly influence seismicity, igneous activity, and geochemical cycling between the oceans, crust, and mantle. The down-going plate experiences metamorphism, and the associated dehydration and fluid flow alters the physical properties of the plate interface and overlying mantle wedge. Direct study of active slab evolution is inhibited by the great depths at which these processes occur and there is a dearth of physical samples to assess the state of water-rock-sediment reactions, thermal and pressure conditions, and physical properties of materials within the subduction channel.</p><p>The drilling of serpentinite mud volcanoes in the Mariana forearc provides a telescope into these deep processes and allows us to sample fluids and xenoliths from the subducting slab and forearc mantle.  Fluid-laden serpentinite is transported along active extensional faults in the upper plate and seeps out at mud volcano edifices. There is widespread evidence for episodic voluminous serpentine eruptions, likely related to seismic events. Mud volcanoes are found across the forearc and sample the slab interface from 13 to 19 km depth. Samples obtained over three Scientific ocean drilling legs (ODP Legs 125 and 195; IODP Leg 366) and additional ROV expeditions elucidate the evolution of fluid production, reaction and exchange, during the progressive subduction of the down-going plate.</p><p>Fluid analyses show clear trends in pore water chemical and isotopic composition with progressive subduction. These parameters can be used to assess the thermal state of the subduction channel at different depths, identify the reactions controlling fluid releases, and to estimate fluid fluxes. Pore waters from the shallowest depths-to-slab (13-16 km) are Ca and Sr-enriched compared to seawater, but otherwise solute poor, low alkalinity fluids of pH ~11. In contrast, more deeply derived fluids (>18 km) have higher pH (12.5), reduced concentrations of Ca and Sr and elevated DIC, Na and Cl, as well as B and K compared to seawater – these changes are associated with the breakdown of slab sheet silicate phases. These waters also have higher δD and δ<sup>11</sup>B values than shallower waters (δD values up to +16 ‰; δ<sup>11</sup>B ~ 14-15 ‰ cf. δD < 0‰; δ<sup>11</sup>B ~ 12-13 ‰). PHREEQC modelling indicates pore water chemical evolution reflects mineralogical characteristics of a predominately basaltic source from the downgoing Pacific Plate; however, a component from sediment sources is a likely contributor, especially for those mud volcanoes near the trench.</p><p>Our new data indicate that the lawsonite-epidote mineral transformation boundary (~250 °C, >18 km depth) is an important source of devolatilization waters and may also drive slab carbonate breakdown, despite its apparent thermodynamic stability at such temperatures and pressures. At shallower depths, the main reactions controlling fluid liberation are sediment compaction (<13 km) followed by clay diagenesis and desorbed water release (>13 km depth). This study thus provides direct evidence for the progressive mineralogical and chemical evolution of a subducting oceanic plate.</p>

2015 ◽  
Vol 37 ◽  
pp. 61-64
Author(s):  
Marco Scambelluri ◽  
Enrico Cannaò ◽  
Mattia Gilio ◽  
Marguerite Godard

2021 ◽  
Author(s):  
Marianna Corre ◽  
Martine Lanson ◽  
Arnaud Agranier ◽  
Stephane Schwartz ◽  
Fabrice Brunet ◽  
...  

<p>Magnetite (U-Th-Sm)/He dating method has a strong geodynamic significance, since it provides geochronological constraints on serpentinization episodes, which are associated to important geological processes such as ophiolite obductions, subduction zones, transform faults and fluid circulations. Although helium content that range from 0.1 pmol/g to 20 pmol/g can routinely be measured, the application of this dating technique however is still limited due to major analytical obstacles. The dissolution of a single magnetite crystal and the measurement of the U, Th and Sm present at the ppb level in the corresponding solution, remains highly challenging, especially because of the absence of magnetite standard. In order to overcome these analytical issues, two strategies have been followed, and tested on magnetite from high-pressure rocks from the Western Alps (Schwartz et al., 2020). Firstly, we purified U, Th and Sm (removing Fe and other major elements) using ion exchange columns in order to analyze samples, using smaller dilution. Secondly, we performed in-situ analyzes by laser-ablation-ICPMS. Since no solid magnetite certified standard is yet available, we synthetized our own by precipitating magnetite nanocrystals. The first quantitative results obtained by LA-ICP-MS using this synthetic material along with international glass standards, are promising. The laser-ablation technique overcomes the analytical difficulties related to sample dissolution and purification. It thus opens the path to the dating of magnetite (and also spinels) in various ultramafic rocks such as mantle xenoliths or serpentinized peridotites in ophiolites.</p><p>Schwartz S., Gautheron C., Ketcham R.A., Brunet F., Corre M., Agranier A., Pinna-Jamme R., Haurine F., Monvoin G., Riel N., 2020, Unraveling the exhumation history of high-press ure ophiolites using magnetite (U-Th-Sm)/He thermochronometry. Earth and Planetary Science Letters 543 (2020) 116359.</p>


2021 ◽  
Author(s):  
Nestor Cerpa ◽  
Diane Arcay ◽  
José Alberto Padrón-Navarta

<p>The water exchange between the Earth’s surface and the deep interior is a prime process for the geochemical evolution of our planet and its dynamics. The degassing of water from the mantle takes place through volcanism whereas mantle regassing occurs through the subduction of H<sub>2</sub>O chemically bound to hydrous minerals. The (im)balance between degassing and regassing controls the budget of surficial liquid water over geological timescales, i.e, the long-term global sea level. Continental freeboard constraints show that the mean-sea level has remained relatively constant in the last 540 Ma (changes less than about 100 m), thus suggesting a limited imbalance. However, thermopetrological models of water fluxes at present-day subduction zones predict that regassing exceeds degassing by about 50% which, if extrapolated to the past, would have induced a drop inconsistent with the estimations of the long-term sea-level. We have made the case that these inconsistencies arise from thermodynamic predictions for the hydrated lithospheric mantle mineralogy that are poorly constrained at a high pressure (P) and temperature (T). In our study, we thus have revised the global-water flux calculations in subduction zones using petrological constraints on post-antigorite assemblages from recent laboratory experimental data on natural peridotites under high-PT conditions [e.g. Maurice et al, 2018].</p><p>We model the thermal state of all present-day mature subduction zones along with petrological modeling using the thermodynamic code Perple_X and the most updated version of the thermodynamic database of Holland and Powell [2011]. For the modeling of peridotite, we build a hybrid phase diagram that combines thermodynamic calculations at moderate PT and experimental data at high PT (> 6 GPa- 600˚C). Our updated thermopetrological model reveals that the hydrated mantle efficiently dehydrates upon the breakdown of the hydrous aluminous-phase E before reaching 250 km in all but the coldest subduction zones. Further subducting slab dehydration is expected between 300-350 km depths, regardless of its thermal state, as a result of lawsonite breakdown in the gabbroic crust. Overall, we predict that present-day global water retention in subducting plates beyond a depth of 350 km barely exceeds the estimations of mantle degassing for average thicknesses of subducting serpentinized mantle subducting at the trenches of up to 6 km. Finally, our models quantitatively support the steady-state sea level scenario over geological times.</p><p> </p><p>Maurice, J., Bolfan-Casanova, N., Padrón-Navarta, J. A., Manthilake, G., Hammouda, T., Hénot, J. M., & Andrault, D. (2018). The stability of hydrous phases beyond antigorite breakdown for a magnetite-bearing natural serpentinite between 6.5 and 11 GPa. <em>Contributions to Mineralogy and Petrology</em>, 173(10), 86.</p><p>Holland, T. J. B., & Powell, R. (2011). An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. <em>Journal of Metamorphic Geology</em>, 29(3), 333-383.</p>


2021 ◽  
Author(s):  
Nadaya Cubas ◽  
Philippe Agard ◽  
Roxane Tissandier

<p>Predicting the spatial extent of mega-earthquakes is an essential ingredient of earthquake hazard assessment. In subduction zones, this prediction mostly relies on geodetic observations of interseismic coupling. However, such models face spatial resolution issues and are of little help to predict full or partial ruptures of highly locked patches. Coupling models are interpreted in the framework of the rate-and-state friction laws. However, these models are too idealized to take into account the effects of a geometrically or rheologically complex plate interface. In this study, we show, from the critical taper theory and a mechanical analysis of the topography, that all recent mega-earthquakes of the Chilean subduction zone are surrounded by distributed interplate deformation emanating from either underplating or basal erosion. This long-lived plate interface deformation builds up stresses ultimately leading to earthquake nucleation. Earthquakes then propagate along a relatively smooth surface and are stopped by segments of heterogeneously distributed deformation. Our results are consistent with long-term features of the subduction margin, with observed short-term deformation as well as physical parameters of recovered subducted fragments. They also provide an explanation for the apparent mechanical segmentation of the megathrust, reconciling many seemingly contradictory observations on the short- and long-term deformation. Consequently, we propose that earthquake segmentation relates to the distribution of deformation along the plate interface and that slip deficit patterns reflect the along-dip and along-strike distribution of the plate interface deformation. Topography would therefore mirror plate interface deformation and could serve to improve earthquake rupture prediction.</p>


2006 ◽  
Vol 932 ◽  
Author(s):  
M. De Craen

ABSTRACTIn Belgium, the Boom Clay is studied as the reference formation for geological disposal of high-level radioactive waste and spent fuel. As the Boom Clay is considered as the main barrier for radionuclide migration/retention, a thorough characterisation of the clay and its pore water was done. This facilitates better understanding of the long-term geological processes and the distribution of the trace elements and radionuclides.From a mineralogical/geochemical point of view, the Boom Clay is considered as a rather homogeneous sediment, vertically as well as laterally. It is composed of detrital minerals, organic matter and fossils. Minerals are mainly clay minerals, quartz and feldspars. Minor amounts of pyrite and carbonates are also present. Small variations in mineralogical/geochemical composition are related to granulometrical variations. The radiochemical study indicates that the Boom Clay is in a state of secular radioactive equilibrium, meaning that the Boom Clay has not been disturbed for a very long time.Pore water sampling is done in situ from various piezometers, or by the squeezing or leaching of clay cores in the laboratory. These three pore water sampling techniques have been compared and evaluated. Boom Clay pore water is a NaHCO3 solution of 15 mM, containing 115 mg·1−1 of dissolved natural organic carbon. Some slight variations in pore water composition have been observed and can be explained by principles of chemical equilibrium.


2020 ◽  
Author(s):  
Mayda Arrieta-Prieto ◽  
Carlos Zuluaga-Castrillón ◽  
Oscar Castellanos-Alarcón ◽  
Carlos Ríos-Reyes

<p>High-pressure complexes along the Earth's surface provide evidence of the processes involved in both the crystallization of rocks in the subduction channel and its exhumation. Such processes are key to understand the dynamics and evolution of subduction zones and to try to reconstruct P-T trajectories for these complexes.</p><p>Previous studies on the Raspas complex (southern Ecuador) agree to state that it is composed of metamorphic rocks, mainly blueschists and eclogites, containing the mineral assemblage: glaucophane + garnet + epidote + omphacite + white mica + rutile ± quartz ± apatite ± pyrite ± calcite; which stabilized in metamorphic conditions of high pressure and low temperature. Additionally, the Raspas Complex has been genetically related to accretion and subduction processes of seamounts, which occurred in South America during the Late Jurassic - Early Cretaceous interval; and the exhumation of the complex was related to subduction channels. However, the evidence presented in the existing literature makes little emphasis on the reconstruction of thermobarometric models for the rocks of this complex.</p><p>By combining petrographic observations, whole-rock chemistry, and mineral chemistry in this work; it was possible to determine that pressure values of 10 ± 3 Kbar and temperature values of 630 ± 30 ° C, (obtained by simulations with THERMOCALC®) correspond to an event of retrograde metamorphism, suffered by the complex during its exhumation. This theory is complemented by the specific textures (that suggest this retrograde process) observed during petrographic analysis, such as amphibole replacing pyroxene, garnet chloritization, plagioclase crystallization and rutile replacement by titanite.</p><p>The results obtained, together with the thermobarometry data published for the Arquía complex in Colombia, allow us to establish a P-T trajectory, that may suggest a genetic relationship between these two complexes as a result of the tectonic processes associated with an active subduction margin that affected the NW margin of the South American plate at the end of the Jurassic.</p><p> </p>


2020 ◽  
Author(s):  
Mario D'Acquisto ◽  
Matthew Herman ◽  
Rob Govers

<div> <p>During and after a large megathrust earthquake, the overriding plate above the rupture zone moves oceanward. Enigmatically, the post-seismic motion of the overriding plate after several recent large earthquakes, further along strike from the rupture zone, was faster in the landward direction than before the event. Previous studies interpreted these changes as the result of increased mechanical coupling along the megathrust interface, transient slab acceleration, or bulk postseismic deformation with elastic bending mentioned as a possible underlying mechanism. Before invoking additional mechanisms, it is important to understand the contribution of postseismic deformation processes that are inherent features of megathrust earthquakes. We thus aim to quantify and analyse the deformation that produces landward motion during afterslip and viscous relaxation. </p> </div><div> <p>We use velocity-driven 3D mechanical finite element models, in which large megathrust earthquakes occur periodically on the finite plate interface. The model geometry is similar to most present-day subduction zones, but does not exactly match any specific subduction zone. </p> </div><div> <p>The results show increased post-seismic landward motion at (trench-parallel) distances greater than 450 km from the middle of the ruptured asperity. Similar patterns of landward motion are generated by viscous relaxation in the mantle wedge and by deep afterslip on the shear zone downdip of the brittle megathrust interface. Landward displacement due to postseismic relaxation largely accumulates at exponentially decaying rates until ~6 Maxwell relaxation times after the earthquake. The spatial distribution and magnitude of the velocity changes is broadly consistent with observations related to both the 2010 Maule and the 2011 Tohoku-oki earthquakes.  </p> </div><div> <p>Further model experiments show that patterns of landward motion due to afterslip and to viscous relaxation are insensitive to the locking pattern of the megathrust. However, the locking distribution does affect the magnitudes of the displacements and velocities. Results show that the increased landward displacement due to postseismic deformation scales directly proportionally to seismic moment. </p> </div><div> <p>We conclude that the landward motion results from in-plane horizontal bending of the overriding plate and mantle. This bending is an elastic response to oceanward tractions near the base of the plate around the ruptured asperity, causing extension locally and compression further away along-trench. This elastic in-plate bending consistently contributes to earthquake-associated changes in surface velocities for the biggest megathrust earthquakes, producing landward motion along strike from the rupture zone.</p> </div>


2020 ◽  
Author(s):  
Whitney Behr ◽  
Adam Holt ◽  
Thorsten Becker ◽  
Claudio Faccenna

<p>Tectonic plate velocities predominantly result from a balance between the potential energy change of the subducting slab and viscous dissipation in the mantle, bending lithosphere, and slab–upper plate interface. A range of observations suggest that slabs may be weak, implying a more prominent role for plate interface dissipation than previously thought. Behr & Becker (2018) suggested that the deep interface viscosity in subduction zones should be strongly affected by the relative proportions of sedimentary to mafic rocks that are subducted to depth, and that sediment subduction should thus facilitate faster subduction plate speeds. Here we use fully dynamic 2D subduction models built with the code ASPECT to quantitatively explore how subduction interface viscosity influences: a) subducting plate sinking velocities, b) trench migration rates, c) convergence velocities, d) upper plate strain regimes, e) dynamic topography, and f) interactions with the 660 km mantle transition zone.  We implement two main types of models, including 1) uniform interface models where interface viscosity and slab strength are systematically varied, and 2) varying interface models where a low viscosity sediment strip of finite width is embedded within a higher viscosity interface. Uniform interface models indicate that low viscosity (sediment-lubricated) slabs have substantially faster sinking velocities prior to reaching the 660, especially for weak slabs, and also that they achieve faster ‘steady state’ velocities after 660 penetration. Even models where sediments are limited to a strip on the seafloor show accelerations in convergence rates of up to ~5 mm/y per my, with convergence initially accommodated by trench rollback and later by slab sinking. We discuss these results in the context of well-documented plate accelerations in Earth’s history such as India-Asia convergence and convergence rate oscillations along the Andean margin.</p><p>References: Behr, W. M., & Becker, T. W. (2018). Sediment control on subduction plate speeds. <em>Earth and Planetary Science Letters</em>, <em>502</em>, 166-173.</p>


Sign in / Sign up

Export Citation Format

Share Document