Effect of pore pressure on the permeability evolution in low porous Indian sandstone

Author(s):  
Kamal Nanda ◽  
Santanu Misra ◽  
Arghya Das

<p>Permeability evolution of low permeable rocks is of critical importance during the flow of gases in processes like, enhanced reservoir recovery and CO<sub>2</sub> sequestration. Permeability measurement depends on the geometric structure of flow path (hydraulic radius, connectivity, tortuosity), the stress regimes surrounding the rock (isotropic, deviatoric) and the characteristic of the fluid (viscosity, compressibility, pore pressure).  For the case of gas permeability within Knudsen diffusion regime (0.001 < Kn< 0.1), the effect of slippage is prominently observed.</p><p>Laboratory scale permeability experiments on an Indian sandstone having connected porosity ~10%, are performed under hydrostatic condition. Nitrogen gas is selected as pore fluid, to avoid adsorption phenomenon. Transient technique of pore-pressure-pulse decay is used for permeability measurement as it is faster and accurate to measure pressure, than the steady state method. Pore pressures and confining pressures are varied in the study to understand the relative effect of matrix compressibility and fluid compressibility on the permeability. Micro-CT analysis of sample is also performed to quantify the geometric attributes of sample.</p><p>Apparent gas permeability ranging from 0.1 to 1 micro-Darcy is obtained from the experiments. The permeability is found to be decreasing with simple effective stress (σ<sub>ii</sub>-p) for constant pore pressures. But a counter intuitive decrease in permeability with increasing pore-pressure at constant confining pressure is also evident and can be attributed to stress dependent Biot’s coefficient (λ).  Slippage corrected permeability is further analysed theoretically and numerically to formulate nonlinear permeability evolution equation in the functional form, f(σ<sub>ii</sub>-λp)  to support experimental outcomes.</p>

Geophysics ◽  
2013 ◽  
Vol 78 (2) ◽  
pp. D75-D83 ◽  
Author(s):  
Adam M. Allan ◽  
Gary Mavko

Microporous rocks are being increasingly researched as novel exploration and development technologies facilitate production of the reserves confined in the low-permeability reservoir. The ability to numerically estimate effective permeability is pivotal to characterizing the production capability of microporous reservoirs. In this study, a novel methodology is presented for estimating the steady-state effective permeability from FIB-SEM volumes. We quantify the effect of a static adsorbed monolayer and Knudsen diffusion on effective permeability as a function of pore pressure to better model production of microporous rock volumes. The adsorbed layer is incorporated by generating an effective pore geometry with a pore pressure-dependent layer of immobile voxels at the fluid-solid interface. Due to the steady-state nature of this study, surface diffusion within the adsorbed layer and topological variations of the layer within pores are neglected, potentially resulting in underestimation of effective permeability over extended production time periods. Knudsen diffusion and gas slippage is incorporated through computation of an apparent permeability that accounts for the rarefaction of the pore fluid. We determine that at syn-production pore pressures, permeability varies significantly as a function of the phase of the pore fluid. Simulation of methane transport in micropores indicates that, in the supercritical regime, the effect of Knudsen diffusion relative to adsorption is significantly reduced resulting in effective permeability values up to 10 nanodarcies ([Formula: see text]) less or 40% lower than the continuum prediction. Contrastingly, at subcritical pore pressures, the effective permeability is significantly greater than the continuum prediction due to rarefaction of the gas and the onset of Knudsen diffusion. For example, at 1 MPa, the effective permeability of the kerogen body is five times the continuum prediction. This study demonstrates the importance of, and provides a novel methodology for, incorporating noncontinuum effects in the estimation of the transport properties of microporous rocks.


2019 ◽  
Vol 17 (1) ◽  
pp. 168-181 ◽  
Author(s):  
Qi Zhang ◽  
Wen-Dong Wang ◽  
Yilihamu Kade ◽  
Bo-Tao Wang ◽  
Lei Xiong

Abstract Different from the conventional gas reservoirs, gas transport in nanoporous shales is complicated due to multiple transport mechanisms and reservoir characteristics. In this work, we presented a unified apparent gas permeability model for real gas transport in organic and inorganic nanopores, considering real gas effect, organic matter (OM) porosity, Knudsen diffusion, surface diffusion, and stress dependence. Meanwhile, the effects of monolayer and multilayer adsorption on gas transport are included. Then, we validated the model by experimental results. The influences of pore radius, pore pressure, OM porosity, temperature, and stress dependence on gas transport behavior and their contributions to the total apparent gas permeability (AGP) were analyzed. The results show that the adsorption effect causes Kn(OM) > Kn(IM) when the pore pressure is larger than 1 MPa and the pore radius is less than 100 nm. The ratio of the AGP over the intrinsic permeability decreases with an increase in pore radius or pore pressure. For nanopores with a radius of less than 10 nm, the effects of the OM porosity, surface diffusion coefficient, and temperature on gas transport cannot be negligible. Moreover, the surface diffusion almost dominates in nanopores with a radius less than 2 nm under high OM porosity conditions. For the small-radius and low-pressure conditions, gas transport is governed by the Knudsen diffusion in nanopores. This study focuses on revealing gas transport behavior in nanoporous shales.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Yongxiang Zheng ◽  
Jianjun Liu ◽  
Yichen Liu ◽  
Di Shi ◽  
Bohu Zhang

The permeability of shale is extremely low. Therefore, the shale reservoir needs fracturing. The fracture network by fracturing can increase the permeability in a stimulated shale reservoir. To understand the permeability evolution in the stimulated shale reservoir, this study measured the permeability of intact and fractured shale samples with different pore pressure and confining pressure by the transient pulse test. And the differences between the two kinds of samples in permeability were analyzed. The results show that permeability magnitude of fractured shale is increased by 5 orders compared to the intact shale. It means that fracture networks after fracturing can effectively improve the permeability. Besides, the change in matrix permeability is the result of the combined effect of slippage effect and matrix deformation. At low pore pressure, the influence of slippage effect is more significant. Based on the results, an improved exponential function was established to describe the relationship between permeability and effective stress of shale matrix. Moreover, the permeability of fractured shale is still bigger than that of the shale matrix when the confining pressure is larger than pore pressure. This paper provides theoretical guidance for studying the evolution of reservoir permeability before and after fracturing.


Geophysics ◽  
2019 ◽  
Vol 84 (4) ◽  
pp. WA71-WA81 ◽  
Author(s):  
Vishal Das ◽  
Tapan Mukerji ◽  
Gary Mavko

We have used numerical modeling to capture the physics related to coupled fluid-solid interaction (FSI) and the frequency dependence of pore scale fluid flow in response to pore pressure heterogeneities at the pore scale. First, we perform numerical simulations on a simple 2D geometry consisting of a pair of connected cracks to benchmark the numerical method. We then compute and contrast the stresses and pore pressures obtained from our numerical method with the commonly used method that considers only structural mechanics, ignoring FSI. Our results demonstrate that the stresses and pore pressures of these two cases are similar for low frequencies (1 Hz). However, at higher frequencies (1 kHz), we observe pore-pressure heterogeneities from the FSI numerical method that cannot be representatively modeled using the structural mechanics approach. At even higher frequencies (100 MHz), scattering effects in the fluid give rise to higher pressure heterogeneities in the pore space. The dynamic effective P-wave modulus [Formula: see text], attenuation [Formula: see text], and P-wave velocity [Formula: see text] were calculated using the results obtained from the numerical simulations. These results indicate a shift in the dispersion curves toward lower frequencies when the fluid viscosity is increased or when the aspect ratio of the microcrack is decreased. We then applied the numerical method on a 3D digital rock sample of Berea sandstone for a sweep of frequencies ranging from 10 Hz to 100 MHz. The calculated pore pressure at the low frequency (1 kHz) is homogeneous and the fluid is in a relaxed state, whereas at the high frequency (100 kHz), the pore pressure is heterogeneous, and the fluid is in an unrelaxed state. This type of numerical method helps in modeling and understanding the dynamic effects of fluid at different frequencies that result in velocity dispersion and attenuation.


Author(s):  
Pengda Cheng ◽  
Weijun Shen ◽  
Qingyan Xu ◽  
Xiaobing Lu ◽  
Chao Qian ◽  
...  

AbstractUnderstanding the changes of the near-wellbore pore pressure associated with the reservoir depletion is greatly significant for the development of ultra-deep natural gas reservoirs. However, there is still a great challenge for the fluid flow and geomechanics in the reservoir depletion. In this study, a fully coupled model was developed to simulate the near-wellbore and reservoir physics caused by pore pressure in ultra-deep natural gas reservoirs. The stress-dependent porosity and permeability models as well as geomechanics deformation induced by pore pressure were considered in this model, and the COMSOL Multiphysics was used to implement and solve the problem. The numerical model was validated by the reservoir depletion from Dabei gas field in China, and the effects of reservoir properties and production parameters on gas production, near-wellbore pore pressure and permeability evolution were discussed. The results show that the gas production rate increases nonlinearly with the increase in porosity, permeability and Young’s modulus. The lower reservoir porosity will result in the greater near-wellbore pore pressure and the larger rock deformation. The permeability changes have little effect on geomechanics deformation while it affects greatly the gas production rate in the reservoir depletion. With the increase in the gas production rate, the near-wellbore pore pressure and permeability decrease rapidly and tend to balance with time. The reservoir rocks with higher deformation capacity will cause the greater near-wellbore pore pressure.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Hongcai Shi

To investigate the influence of pore pressure ( σ w ) on the creep behavior and permeability of red sandstone, triaxial creep test with permeability test under different pore pressures was conducted using MTS 815 testing system. The experimental results demonstrate that water has significant weakening effect on the long-term mechanical properties of sandstone, and the long-term strength of sandstone gradually decreases with increase in pore pressures. All permeability-time curves demonstrate a “decreasing-increasing” trend, but two different permeability evolution trends during the steady creep stage are observed, which are related to deviatoric stress. The permeability of both intact ( k 0 ) and fractured sandstone ( k f ) samples increases with the increase in pore pressure, which are in consistent with the failure mode analysis of fractured sandstone samples. However, while the relationship between k 0 and σ w is positive linear, it is a positive exponential function relationship between k f and σ w .


Water ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1653
Author(s):  
Guofu Li ◽  
Yi Wang ◽  
Junhui Wang ◽  
Hongwei Zhang ◽  
Wenbin Shen ◽  
...  

Deep coalbed methane (CBM) is widely distributed in China and is mainly commercially exploited in the Qinshui basin. The in situ stress and moisture content are key factors affecting the permeability of CH4-containing coal samples. Therefore, considering the coupled effects of compressing and infiltrating on the gas permeability of coal could be more accurate to reveal the CH4 gas seepage characteristics in CBM reservoirs. In this study, coal samples sourced from Tunlan coalmine were employed to conduct the triaxial loading and gas seepage tests. Several findings were concluded: (1) In this triaxial test, the effect of confining stress on the permeability of gas-containing coal samples is greater than that of axial stress. (2) The permeability versus gas pressure curve of coal presents a ‘V’ shape evolution trend, in which the minimum gas permeability was obtained at a gas pressure of 1.1MPa. (3) The gas permeability of coal samples decreased exponentially with increasing moisture content. Specifically, as the moisture content increasing from 0.18% to 3.15%, the gas permeability decreased by about 70%. These results are expected to provide a foundation for the efficient exploitation of CBM in Qinshui basin.


Holzforschung ◽  
2001 ◽  
Vol 55 (1) ◽  
pp. 82-86
Author(s):  
J. Lu ◽  
F. Bao ◽  
Y. Zhao

Summary To calculate the effective radii of two conductive elements in series in wood specimens by using the gas permeability measurement, the four parameters from the curvilinear relationship of superficial specific permeability against reciprocal mean pressure as illustrated in Petty's model must be evaluated. This paper describes a detailed procedure for obtaining such parameters by using the least-squares fit calculated from a statistical analysis system (SAS) program. Three different iterative optimization algorithms and starting points were used separately to fit the Petty's nonlinear model based on the same experimental data from one specimen of birch. The estimate of the parameters: A = 35.38 darcy, B = 80.51 darcy, l = 0.19 darcy atm, m = 6.34 darcy atm was recommended for the fitted model. Compared to the results on the estimate of parameters obtained in the previous papers, this estimate for the parameters was a global minimum, thus it was a refinement and more accurate. Since the Gauss-Newton method resulted in almost the same convergence results for all the three sets of starting values with the least iterations in the evaluation, it was the preferred optimization algorithm both for simplicity and accuracy in solving the Petty's model. Because the same solutions for all three iterative optimization algorithms were obtained by using two different sets of starting points produced from the grid search, a grid search seemed to be very helpful for finding reasonable starting values for various iterative optimization techniques.


2014 ◽  
Vol 1053 ◽  
pp. 389-393
Author(s):  
Zhi Lin Cheng ◽  
Ying Ying Liu

The highly intergrown NaA zeolite membranes on seeded α-Al2O3substrate were synthesized by microwave heating method. The preparation of seeds with the size of ca.120nm employed the vapor phase transport method (VPT). The XRD patterns indicated that the pure NaA zeolite membranes formed on the seeded α-Al2O3substrate for varied synthesis times. However, the peak intensity of NaA zeolite membrane with synthesis time of 50min obviously decreased, suggesting that the NaA membrane could take place the dissolution at that time. The SEM images indicated that the NaA zeolite membranes with synthesis time of 15-30min had a good integrity and consisted of highly intergrown zeolite crystals, but the NaA membrane with synthesis time of 50min appeared some large defects, further verifying the result of XRD pattern. The gas permeability showed that the maximum of H2/N2and H2/C3H8permselectivities attained 4.23 and 8.24, respectively, higher than those of the corresponding Knudsen diffusion. These results suggested that the diffusion of gases, at least in part, are affected by the pore size of zeolite and the function of molecular sieving can be embodied on the synthesized membrane.


Sign in / Sign up

Export Citation Format

Share Document