scholarly journals Environmental Vulnerability Modeling in the Extensively Urbanized Arctic Center Integrating Remote Sensing, Landscape Mapping, and Local Knowledge

Author(s):  
Sébastien Gadal ◽  
Moisei Zakharov ◽  
Jurate Kamicaityte ◽  
Antonina Savvinova ◽  
Yuri Danilov

<p>Arctic extensively urbanized centers are subject to the impact of many negative environmental phenomena progressing in terms of global climate change and regional development in Yakutia in the context of poor and missing databases. For this reason, the modeling of the risk exposures is based on combining the remote sensing, and local knowledge of inhabitants. According to the occurrences of the natural hazards, the territorial management and the decision-making system require the identification and assessment of natural risks to which the rural populations localized in the towns and villages are exposed, for example, in the urban center of Khamagatta located at 70km to the North from Yakutsk near the Lena River. The main environmental vulnerability exposures are seasonal: springtime floods between May and June, the forest fires from June to August, the cyclic permafrost degradation, and river erosion impacts.</p><p>The current vulnerability impacts, damages to the lands and the settlements, and the populations risk exposures are analyzed from the maps of vulnerabilities created from remote sensing satellite Sentinel 2A/B series, with the local knowledge of the inhabitants of Khamagatta who lived and perceived all events. All the data generated, maps, models of vulnerability exposures, and local knowledge are integrated, combined, and merged into the geographic information system (GIS). The GIS modeling combines the risk of natural hazards and the damages, and the risk knowledge and perceptions of the inhabitants. Land uses, Landscape classification, and the land cover is made by Object-Based Image Analysis (OBIA) using an optical time series of Sentinel 2 images (2015-2020) including the population knowledge for the recognition of the environmental vulnerabilities. The methodological approach included the participation of local people in workshops through discussion and participatory mapping, questionnaires, and interviews in two stages. The first stage included the development of the knowledge database for a comprehensive understanding of the life of the local population, including the forms of adaptation to the negative natural phenomena. The collected information is delocalized and integrated into the GIS. The second stage consisted of validation and discussion, including stakeholders (municipality and rescue services) to increase the reliability and legitimacy of the research results.</p><p>Perceptions of the inhabitants of Khamagatta are correlated with the maps of risk exposures generated by remote sensing to increase the accuracy of the environmental process modeling and landscape classification. The combination of the environmental change dynamics, the impacts on the towns and villages with the human perception and experience constitutes the main base supporting the prevention mapping of the natural hazards. This data could be very useful in planning the development of Arctic towns and villages and proposing evolution scenarios and urban planning models and strategies for increasing their resilience and adaptation to climate change consequences.</p>

Author(s):  
Shahid Mohommad ◽  
Shambhu Prasad Joshi

Climate change is an inevitable process impacting the forest ecosystem. Various impacts like treeline shift, forest fires, and Species distribution are due to the effect of climate change. Green House Gases concentration in the atmosphere is increasing day by day due to anthropogenic activities. The pace of climate change is very alarming which will have the substantial impact on the forest ecosystem. Role of remote sensing and geographic information system in observing the forest ecosystem was reviewed. Spatio-temporal analysis of change in forest structure can be proficiently done with the help of remote sensing and geographic information system. Climate Change Mitigation programmes like Reducing Emissions from Deforestation and Forest Degradation (REDD-plus) can be implemented with the help of remote sensing and geographic information system. Baseline data generation using remote sensing and geographic information system can be useful in designing the policies for forest management and monitoring.


2021 ◽  
Vol 13 (10) ◽  
pp. 2014
Author(s):  
Celina Aznarez ◽  
Patricia Jimeno-Sáez ◽  
Adrián López-Ballesteros ◽  
Juan Pablo Pacheco ◽  
Javier Senent-Aparicio

Assessing how climate change will affect hydrological ecosystem services (HES) provision is necessary for long-term planning and requires local comprehensive climate information. In this study, we used SWAT to evaluate the impacts on four HES, natural hazard protection, erosion control regulation and water supply and flow regulation for the Laguna del Sauce catchment in Uruguay. We used downscaled CMIP-5 global climate models for Representative Concentration Pathways (RCP) 2.6, 4.5 and 8.5 projections. We calibrated and validated our SWAT model for the periods 2005–2009 and 2010–2013 based on remote sensed ET data. Monthly NSE and R2 values for calibration and validation were 0.74, 0.64 and 0.79, 0.84, respectively. Our results suggest that climate change will likely negatively affect the water resources of the Laguna del Sauce catchment, especially in the RCP 8.5 scenario. In all RCP scenarios, the catchment is likely to experience a wetting trend, higher temperatures, seasonality shifts and an increase in extreme precipitation events, particularly in frequency and magnitude. This will likely affect water quality provision through runoff and sediment yield inputs, reducing the erosion control HES and likely aggravating eutrophication. Although the amount of water will increase, changes to the hydrological cycle might jeopardize the stability of freshwater supplies and HES on which many people in the south-eastern region of Uruguay depend. Despite streamflow monitoring capacities need to be enhanced to reduce the uncertainty of model results, our findings provide valuable insights for water resources planning in the study area. Hence, water management and monitoring capacities need to be enhanced to reduce the potential negative climate change impacts on HES. The methodological approach presented here, based on satellite ET data can be replicated and adapted to any other place in the world since we employed open-access software and remote sensing data for all the phases of hydrological modelling and HES provision assessment.


2021 ◽  
Author(s):  
Maria Mavrouli ◽  
Spyridon Mavroulis ◽  
Efthymios Lekkas

<p>The first confirmed COVID-19 case was reported in December 2019. Over the first months of 2020, the novel SARS-CoV-2 virus was spread worldwide resulting in the declaration on March 11, 2020 of a global COVID-19 pandemic by the World Health Organization. The evolving pandemic has resulted in over 1900000 fatalities worldwide (as of January 8, 2021), while all sectors of the everyday life has been affected in numerous and varied ways. Natural hazards did not stop for the novel coronavirus. When the natural hazards cross the path of an evolving pandemic, compound emergencies emerge and are characterized by various effects and new unprecedented challenges.</p><p>Greece was no exception. Geological, hydrological and meteorological hazards took place in several parts of the country and they affected the local population, the natural and the built environment including buildings, infrastructures and lifelines. Among the most destructive effects in terms of human and economic losses was the March 21, 2020, Mw=5.7, Epirus (northwestern Greece) earthquake, the August 9, 2020, Evia (central Greece) flood, the September 17, 2020, Ianos medicane and the October 30, 2020, Mw=7.0, Samos (Eastern Aegean Sea) earthquake.</p><p>In order to identify the potential impact of the aforementioned disasters on the evolution of the COVID-19 pandemic in the disaster-affected areas, the officially reported laboratory-confirmed daily COVID-19 cases for the pre- and post- disaster periods from the disaster-affected areas were used. The impact of disasters in the evolution of the pandemic in the studied disaster-affected areas comprises increasing and decreasing trends and stability of the COVID-19 cases during the post-disaster period. More specifically, the geological and the hydrological hazards and the induced disasters negligibly affected the evolution of pandemic in the affected areas, while the hydrometeorological hazards resulted in increasing trends of the post-disaster reported COVID-19 cases in various affected areas.</p><p>The detected trends are strongly associated with the pre-existing viral load and infection rate in the disaster-affected areas, to the emergency response actions adapted to adopt provisional measures for the mitigation and elimination of COVID-19 consequences, to demographic features of the affected areas and to the intensity of the induced disasters and their effects on the local population (fatalities and injuries), the natural environment (primary and secondary environmental effects) and the built environment (structural damage to buildings, infrastructures and lifelines).</p>


2016 ◽  
Vol 16 (1) ◽  
pp. 239-253 ◽  
Author(s):  
I. Lehtonen ◽  
A. Venäläinen ◽  
M. Kämäräinen ◽  
H. Peltola ◽  
H. Gregow

Abstract. The target of this work was to assess the impact of projected climate change on forest-fire activity in Finland with special emphasis on large-scale fires. In addition, we were particularly interested to examine the inter-model variability of the projected change of fire danger. For this purpose, we utilized fire statistics covering the period 1996–2014 and consisting of almost 20 000 forest fires, as well as daily meteorological data from five global climate models under representative concentration pathway RCP4.5 and RCP8.5 scenarios. The model data were statistically downscaled onto a high-resolution grid using the quantile-mapping method before performing the analysis. In examining the relationship between weather and fire danger, we applied the Canadian fire weather index (FWI) system. Our results suggest that the number of large forest fires may double or even triple during the present century. This would increase the risk that some of the fires could develop into real conflagrations which have become almost extinct in Finland due to active and efficient fire suppression. However, the results reveal substantial inter-model variability in the rate of the projected increase of forest-fire danger, emphasizing the large uncertainty related to the climate change signal in fire activity. We moreover showed that the majority of large fires in Finland occur within a relatively short period in May and June due to human activities and that FWI correlates poorer with the fire activity during this time of year than later in summer when lightning is a more important cause of fires.


2018 ◽  
Vol 23 ◽  
pp. 00030 ◽  
Author(s):  
Anshu Rastogi ◽  
Subhajit Bandopadhyay ◽  
Marcin Stróżecki ◽  
Radosław Juszczak

The behaviour of nature depends on the different components of climates. Among these, temperature and rainfall are two of the most important components which are known to change plant productivity. Peatlands are among the most valuable ecosystems on the Earth, which is due to its high biodiversity, huge soil carbon storage, and its sensitivity to different environmental factors. With the rapid growth in industrialization, the climate change is becoming a big concern. Therefore, this work is focused on the behaviour of Sphagnum peatland in Poland, subjected to environment manipulation. Here it has been shown how a simple reflectance based technique can be used to assess the impact of climate change on peatland. The experimental setup consists of four plots with two kind of manipulations (control, warming, reduced precipitation, and a combination of warming and reduced precipitation). Reflectance data were measured twice in August 2017 under a clear sky. Vegetation indices (VIs) such as Normalized Difference Vegetation Index (NDVI), Photochemical Reflectance Index (PRI), near-infrared reflectance of vegetation (NIRv), MERIS terrestrial chlorophyll index (MTCI), Green chlorophyll index (CIgreen), Simple Ration (SR), and Water Band Index (WBI) were calculated to trace the impact of environmental manipulation on the plant community. Leaf Area Index of vascular plants was also measured for the purpose to correlate it with different VIs. The observation predicts that the global warming of 1°C may cause a significant change in peatland behaviour which can be tracked and monitored by simple remote sensing indices.


2020 ◽  
Author(s):  
Gulperi Selcan Öncü

<div> <p>In recent times we have often received news such as about melting glaciers, sudden and torrential rain, storms, increased atmospheric temperatures, and forest fires. We have also observed some of these phenomena in our immediate vicinity. There is a frequently used expression among the public, 'the seasons are shifting'. </p> <p>Students have asked the reasons why these changes have been occurring and what about changes between the past and present. In order to understand these changes we all know that they need to understand global warming in the first place. To help them with this as an science teacher I have guided them to be capable of using experimental methods within project-based learning approaches. First they did preliminary literature surveys and then they designed an experiment. In the experiment, they tested the hypothesis that the water inside the bell JAR, which is coated with black cardboard, heats up more than the transparent one. In this way they began to investigate climate change due to greenhouse gases. </p> <p>In the experiment, two bell glasses were used to represent the atmosphere layers. One was intermittently covered with pieces cut out of black cardboard. Black cardboard was used to represent the greenhouse gas due since the black colour absorbs light. Two beakers of the same size were used, filled with water. A thermometer was placed inside and bell jars were turned upside down and put over the beakers. The two thermometers were used to measure the water temperature inside the beakers. </p> <p>The first apparatus is the control group (inside uncovered). The second apparatus is the experimental group (covered with independent black cardboard). In the experimental and observation stage, the independent variable is the bell jar; the dependent variable is the water temperature. The constant variables are the size of the jar, the size of the beaker, the amount of water and the ambient conditions. </p> <p>Having set up the apparatus, the initial temperature of water was measured and recorded. Students carried out the experiment on a sunny day by placing the apparatus in a sun-covered field. They recorded the data in the tables they completed periodically. Then they shared the results with participants at the science festival. </p> <p>In this way they began to investigate the impact of greenhouse gases on climate change.</p> </div>


2020 ◽  
Author(s):  
flore sergeant ◽  
rene therrien ◽  
ludovic oudin ◽  
anne jost ◽  
françois anctil

<p><strong>ABSTRACT</strong></p><p>Due to polar amplification of climate change, high latitudes are warming up twice as fast as the rest of the world. This warming leads to permafrost thawing, which induces greenhouse gases release, ground subsidence, and modifies surface and subsurface hydrologic regimes. Ground subsidence in turn affects local infrastructure stability. In this context and to better manage future infrastructures and water resources of northern regions, it is crucial to be able to evaluate the thawing rate of permafrost.</p><p>In many Arctic zones, the frequency of environmental disturbances caused by permafrost thawing increases so rapidly that maintaining an accurate inventory of the state of permafrost at a regional scale represents a great challenge. Moreover, depending on the study area and the permafrost ice content, the thawing rate can vary from millimetres to decimeters per year. Another current challenge is the limited availability of temporal and spatial data on permafrost thawing rates.</p><p>To address the above challenges, two indirect methods are used: (1) Arctic river streamflow analysis method and (2) Ground settlement analysis method via satellite image observation. Both methods use free-access data that have an exceptionally large temporal and spatial coverage capacity for such a poorly instrumented region. The first method analyses the recession events’ behavior of Arctic streams and relates those behaviors to changes in catchment-scale depth to permafrost that influences storage-discharge dynamics. This work differs from previous hydrological system analysis in northern systems in that it looks at long-term trends (>10 years) in recession intercept to assess permafrost dynamics, while other studies looked at recession characteristics within a season to assess active-layer dynamics. The second method analyses satellite images of the Arctic ground and associates surface elevation change to long-term permafrost degradation due to climate change.</p><p>Both methods have already been tested through multiple local investigations and gave promising results. The recession flow analysis method has been applied to Yukon river basin, northern Sweden basins and Lena basin in Siberia, while the remote sensing analysis method has been tested on Baffin Island, Herschel Island in Canada, North Slope of Alaska and the Tibetan Plateau. However, no comparative study and no large-scale application have been conducted so far. Extending the analysis to hundreds of Arctic basins and comparing the resulting permafrost-thawing rate values from both methods constitute the innovative aspect of this project.</p><p> </p><p>KEY WORDS: climate change, permafrost thawing, storage-discharge dynamics, ground subsidence, satellite images</p>


2007 ◽  
Vol 12 ◽  
pp. 81-85 ◽  
Author(s):  
M. Llasat-Botija ◽  
M. C. Llasat ◽  
L. López

Abstract. This study analyses press articles published between 1982 and 2005 in an attempt to describe the social perception of natural hazards in Catalonia. The articles included in the database have been classified according to different types of risk. In addition, the study examines the evolution of each type of risk in the press coverage during the study period. Finally, the results have been compared to data provided by insurance companies with respect to compensations paid out for damages. Conclusions show that floods are the most important natural hazard in the region, but that the number of headlines for each event is greater in the case of snowfalls and forest fires. Factors such as the season of the year, the proximity of the affected region to the capital, the topical issues at the time, and the presence of other important news must be considered when the impact in the press is analysed.


2021 ◽  
Vol 3 (1) ◽  
pp. 1
Author(s):  
Lilik Sumarni ◽  
Endang Rudiatin

The impact of climate change caused by global warming is currently one of the trending topics in various media and it is an extremely serious threat to human security. Forest fires, floods, landslides and changes in lifestyles to survive natural disasters are the very significant contributing factors to poverty rates in various parts of the world. The London School of Economics and Political Science conducted a study of 141 countries affected by disasters in the 1981-2002 period and found a close link between natural disasters and women's socioeconomic status. Data from the National Agency for Disaster Management (BNPB) states that women have 14 times of risk for becoming victims of disasters compared to adult men. Women become the most victimized because women prioritize children and their families rather than saving themselves. Although women bear more risks to climate change, women can also have the principal opportunity and role in implementing climate change mitigation adaptation, namely by making women actors in disaster mitigation and drivers of change in parallel to their strong responsibilities to their families. By providing adequate knowledge for women about adaptation and mitigation of disasters, the women can turn themselves to be the strategic activists in coping with disasters for communities living in disaster-prone areas.This study is a comparative discussion of three research results to obtain an overview and find solutions to women's problems from the consequences of climate change, which is a study by changing women from being the most victims of natural disasters to becoming the driving actor for families and communities in overcoming disaster and her ability to survive the post-disaster situation. The conclusion is the three levels of gender roles related to climate change to increase women's adaptive capacity. An adaptation strategy needs the form of 1. Increasing the role of women in the political arena. It is a crucial issue because women's rights can be protected by their presence and role, as well as women in guarding policies. 2. Increasing the role of women in the realm of education. Education is no less important than politics because education will provide a foundation for understanding and self-confidence, bargaining and personal branding for women so that their presence in society will be recognized and will no longer be discriminated. 3. Cultural reconstruction based on gender equality is very important because so far, the notion of patriarchy is still inherent in our culture. Many perspectives are cooptated on the statement that superior (men) are stronger then give rise women mythos that is said to be weak (women). In reality, the presence of women is still fundamental to the aspect of maintaining the economy and education for the continuation and the quality of the life in the society.


2019 ◽  
Vol 27 (2) ◽  
pp. 313-325
Author(s):  
Galina N Ochirova ◽  
Evgeniya M Moiseeva ◽  
Anastasiya S Maksimova

The article presents overview of environmental and climatic, economic and migration situations in the countries of Oceania. In order to determine the relation of environmental and climatic changes and migration processes in the island states and territories of Oceania, New Zealand and Australia, analytical reports and censuses of the population of the states, estimates and statistics of international organizations are studied. The article analyses the state policy of island states and territories in the field of sustainable development and migration, as well as immigration policies of the main host countries such as Australia, New Zealand and the USA. It was found that internal and external migration in Oceania is mainly driven by socio-economic factors (problems with employment, education and medical services), while internal migration is usually directed to urban area, and external - from the city to foreign countries. Exploring the peculiarities of climate change and natural phenomena and their impact on the livelihoods of people in the region of Oceania, we can conclude that natural and climatic influences directly and indirectly affect different spheres of life of the local population. Nevertheless, the impact of climate change and natural phenomena on the migration of the population of Oceania at the moment is insignificant (no more than 10-12% of international flows), however, in the case of an increase in the intensity and frequency of na- tural disasters, and also due to an increase in the number and density of population (71 million people will live in the region to 2100) an increase in the flow of environmental migrants is inevitable.


Sign in / Sign up

Export Citation Format

Share Document