A textbook example of triply-folded Ediacaran carbonates – insights into geodynamics and geomorphology (Hat Plateau, Jabal Akhdar Dome, Oman Mountains)

Author(s):  
Andreas Scharf ◽  
Ivan Callegari ◽  
Frank Mattern ◽  
Katharina Scharf ◽  
Eugenio Carminati

<p>The Jabal Akhdar Dome (JAD) of the Oman Mountains contains superbly exposed sedimentary Neoproterozoic formations in its core. Carbonates of the Hajir Formation are resistant against erosion in the prevailing semi-arid conditions unlike the subjacent and overlying siliciclastic formations. Structural fieldwork and satellite image analyses reveals that the central-western JAD (Hat Plateau) was affected by three folding events. Each event produced its own fascinating fold style with associated structures. The widely exposed Hajir carbonates displays these folds spectacularly. The geomorphology of these carbonates reflects the folds with differently oriented rides and troughs as anti- and synclines, respectively. Thus, the JAD acted as a natural laboratory where the 3D fold styles can be directly linked to the geomorphology and vice versa.</p><p>A previously unrecognized folding event (F1) produced overturned NNE-verging tight folds. The fold amplitude ranges between tens and hundreds of meters, and the overall non-plunging fold axes trend ESE. The F1 folds are associated with a gently to moderately SSW-ward dipping penetrative axial plane cleavage. Open to tight upright kilometric F2 folds refolded the F1 structures. The F2 folds are overall non-plunging and NE/NNE-trending, and contain a penetrative sub-vertical axial plane schistosity, parallelly oriented to the F2 axes. The youngest folding event (F3) produces one open and broad anticline. The F3 fold axis trends WNW through the Hat Plateau and the anticline contains a WNW-striking sub-vertical spaced axial plane schistosity.</p><p>The deformation style of the F2 folds and related structures changes abruptly along a NNE-oriented zone at the western end of the Hat Plateau. West of this, the F2 structures are ENE-oriented while east of it the orientation is NE to NNE. Furthermore, the amplitude of the F2 folds decreases from ~3 km in the west to <1 km in the east. We relate this sudden change of the F2 style to the western flank of a pre-existing subsurface basement horst. We suggest that this NNE-striking horst is the northern continuation of the Makarem-Mabrouk High/Horst below the JAD. The eastern horst shoulder would be at the eastern margin of the JAD and parallel to the Semail Gap. A buttressing effect along the western horst’s shoulder during NW/SE to WNW/ESE-directed F2 shortening would explain the dramatic change in the F2 style.</p><p>In summary and in 3D terms, the F1 folds were originally oriented parallel to the present F1 anticline, i.e. before the F2 deformation, while the F2 folds strike almost perpendicularly to this direction. The F1 and F2 folding episodes associated with the abrupt change in F2 style are depicted in a steric block diagram, which visualizes the complex findings, allowing for a 3D understanding of the structures.</p>

2021 ◽  
Author(s):  
Frank Mattern ◽  
Robert Bolhar ◽  
Andreas Scharf ◽  
Katharina Scharf ◽  
Paul Mattern ◽  
...  

<p>The geology of the Oman Mountains was shaped by the SW-directed obduction of allochthonous deep-sea rocks (Hawasina), trench-facies rocks (Haybi) and oceanic lithosphere (Semail Ophiolite) onto Arabian autochthonous shelf carbonates during the Late Cretaceous. Locally, the resulting obduction orogen was overprinted by significant post-obductional extension. NNE-directed extension occurred during at least two episodes which took place from the latest Cretaceous to early Eocene and late Eocene to Oligocene/Miocene, respectively. Moreover, the Oman Mountains, between the eastern Batinah Coastal Plain and the Sur area (Qalhat Fault) display numerous ~N/S-oriented folds and reverse faults. These structures overprinted mid-Eocene to at least Oligocene/Miocene formations (i.e., the Seeb to Barzaman formations).</p><p>Detailed structural/field work and satellite image analyses provide ample evidence that these ~N/S-compressional features are cogenetic with ~WNW to NW-striking sinistral faults. All these post-mid-Eocene structures are part of one major left-lateral WNW- to NW-striking shear zone from the Batinah Coastal Plain in the NW to the Batain area in the SE. Sinistral shearing is localized along the southwestern margin of the Saih Hatat Dome, crosses the Fanja area and continues to the northern part of the Jabal Akhdar Dome (Jabal Nakhl Subdome). The straight southwestern margin of the Saih Hatat Dome may correlate with a Permo-Triassic major extensional fault, active during the Pangea rifting. Shearing also affected rocks northeast of this zone, i.e., within the Salma Plateau and the Rusayl Embayment. Thus, shearing affected an area of 250 km by 40 km in width. We term this shear zone hereafter the “Hajar Shear Zone” (HSZ). The amount of sinistral shearing is unknown due to the absence of markers and wide strain distribution, but is likely to be at the order of a few tens of kilometers.</p><p>The cause for the WNW-directed sinistral shearing is the overall E/W-directed shortening between the Arabian and Indian plates. During shortening, a pre-existing WNW-striking basement fault zone was reactivated, creating the HSZ. A G-Plates reconstruction between the two plates reveals an ~8° counter-clockwise rotation of India (with respect to fixed Arabia) between 32.5 and 20 Ma, resulting in ~150 km E/W-shortening between both plates at the easternmost tip of Arabia. The area northeast of the HSZ underwent most E-W-shortening. The 150 km interplate E/W-shortening is the maximum value for sinistral shearing along the HSZ and other faults. Some of the shortening may have been absorbed offshore Oman across the Owen Basin and/or along the continental/oceanic transitions of both plates.</p>


An interferometer technique for the quantitative study of swelling and diffusion in transparent high polymers and a method of determining the concentration distribution from the fringe system have been developed. The concentration—distance curves in the system chloroform-stretched cellulose acetate have been determined at two different temperatures with a view to estimating activation energies over a range of concentrations. The curves are found to consist of two almost linear portions with a considerable and abrupt change of gradient taking place over a small range of concentration. A corresponding sudden change of gradient has been observed in other systems. Considerable experimental difficulties were met in determining the refractive index and density curves for the two component systems, which were required by the method. Eventually a refractive index curve was constructed with the help of data obtained by several approaches.


GeoArabia ◽  
2000 ◽  
Vol 5 (3) ◽  
pp. 387-402 ◽  
Author(s):  
M. Atef Noweir ◽  
Abdulrahman S. Alsharhan

ABSTRACT Detailed field mapping and structural studies in the Jebel Auha-Jebel Huwayyah area northeast of Al-Ain indicate that folding of neoautochthonous sedimentary rocks produced the north-northwest-trending Huwayyah Anticline. The anticline at the surface is composed of the Maastrichtian Qahlah and Simsima formations unconformably overlain by shallow-marine carbonate rocks that are correlated on faunal grounds with the Middle Eocene Dammam Formation. The investigation of the Huwayyah Anticline has identified three microfacies of bioclastic packstone, nummulitic packstone, and nummulitic packstone-grainstone in the local Dammam Formation. Diagenesis in the form of silicification, cementation, recrystallization, dissolution, compaction and neomorphism is widespread. The Huwayyah Anticline is a fault-propagation fold above a thrust ramp. The ramp developed from a pre-existing Late Cretaceous basal thrust within the Semail Ophiolite on the Oman Mountain Front. The anticline was formed as a result of regional compressive deformation due to rejuvenation of the Late Cretaceous thrust in post-Middle Eocene times. Westward-directed high-angle reverse faults of Jebel Auha trend parallel to the fold axis of the anticline. The Auha faults probably originated as west-dipping thrusts on the western flank of the anticline and were subsequently rotated to their present attitude as the flank of the anticline became steeper due to compression from the east.


2021 ◽  
Vol 20 (3) ◽  
pp. 278-288
Author(s):  
Kevin Fuchs

Abstract The sudden shift from physical classroom education towards emergency remote teaching (ERT) in higher education during the unprecedented global pandemic SARS-CoV-2, or more commonly known as COVID-19, caused an abrupt change in the learning environment for students and educators alike. The disruptive overnight change to convert entire courses to emergency remote teaching caused distress for not only educators, but also students as they had little time to adapt to the new circumstances. While the embedment of technologies in the classroom is not a new concept, this quantitative research examined the impact on perceived student engagement as a result of the sudden change, and how students in higher education in Finland (n = 121) and Thailand (n = 137) responded to this change. One of the primary findings of the research was that students in Thailand indicated difficulties completing group assignments digitally, while, contrary to that finding, students in Finland consented to ease in digital collaboration concerning their group works. As a logical next step, it is recommended to conduct qualitative research to gain a more comprehensive insight into how the views on this particular statement differed significantly between both focus groups of students.


2014 ◽  
Vol 891-892 ◽  
pp. 753-758 ◽  
Author(s):  
Zi Hai Shi ◽  
Masaaki Nakano ◽  
Cui Ping Liu

The multistage strength degradation theory, which has recently emerged from studies on the material and structural behaviour of concrete, provides a clear description of the mechanism of fatigue. According to this theory, fatigue is caused by the sporadic sudden change of cracking behaviour in a system under cyclic loading, leading to intermittent strength reduction of the system and its eventual failure. As metal is the main engineering material plagued most by fatigue failure, this newly-established theory needs to be experimentally verified on metal, which is the aim of this study. The obtained test results present strong experimental evidence for the existence of multistage strength degradation processes in metals under cyclic loading, and the strength degradation is clearly triggered by the abrupt change of cracking behaviour. These tests confirm the relevance of the multistage strength degradation theory on metal fatigue, and the engineering implications of the study are discussed.


2021 ◽  
Vol 41 (I) ◽  
pp. 140-150
Author(s):  
V. SHEVCHUK ◽  
◽  
Z. KUZYK ◽  
L, AVDASOVA ◽  
◽  
...  

Goal. The purpose of this paper is to create a tourist GIS of the Sumy oblast using cartographic materials and remote sensing data, as well as the development of new tourist routes in the Sumy oblast by means of modern geoinformation technologies and ArcGIS, ArcGIS Online, and AllTrails software. Method. The main stages of the creation of Sumy oblast tourist GIS were: search and analysis of the of input materials, necessary for the creation of a tourist GIS; create of the structural block diagram of research works; Satellite image processing, in particular the creation of synthesized images and the use of the Pansharpening technique for a better interpretation of objects; building a digital elevation model for tourist GIS; processing of cartographic materials in ArcGIS; creation of a graphical and attributive database; classification and layer-by-layer data visualization; development of tourism routes by means of ArcGIS Online and AllTrails web applications; analysis of the created of Sumy oblast tourist GIS. Results. As a result of the research: a structural diagram of the main stages of the research has been developed; a graphical-attributive database with information about tourist objects was organized; created a digital elevation model based on SRTM data of Sumy oblast, made the topographic basis of GIS; by means of the ArcGIS 10.3 software a tourist GIS of the Sumy oblast was created, which includes 255 tourist objects of various profiles; using web applications ArcGIS Online and AllTrails, 5 automobile tourist routes with a total length of 1234 kmand 1 pedestrian route 11 kmlong, which pass through the territory of Sumy oblast, have been developed. Scientific novelty. The novelty of the research lies in the methodology for creating a Sumy oblast tourist GIS, the development of new excursion tourist routes and objects, and their visualization based on the use of cartographic materials and satellite images by means of modern GIS, in particular ArcGIS 10.3, ArcGIS Online and AllTrails. Practical value. The research results can be used in the tourism industry, where the priority task is to provide tourists with modern highquality overview, cognitive and cartographic materials, including traditional maps, schematic maps, booklets, and digital maps, 3D models, web applications, audio, video and virtual tours, which are created using the latest digital and GIS technologies, as well as to popularize the tourist and recreational potential of the Sumy oblast among the population.


1962 ◽  
Vol 99 (1) ◽  
pp. 69-84 ◽  
Author(s):  
P. K. Gangopadhyay ◽  
M. R. W. Johnson

AbstractThe orientation of quartz in small shear folds, which belong to two movement episodes, is considered to result from laminar flow along the axial plane surfaces. The locations of fabric maxima and girdles are controlled by the orientation of thea–kinematic axis, which in shear folds may not be normal to the fold axis, and the shear surfaces. The earlier fabric consists, essentially, of paired maxima arranged systematically about the axial plane;ac–girdles are absent. The explanation of the near-orthorhombic symmetry of the first fabric in terms of a late “flattening” overprinted upon the previously-formed fold is not favoured: quartz orientation developed during the first folding. The later fabric results from the recrystallization of quartz grains with their largest dimensions andc–axes parallel to the calculateda–kinematic axis of second folding.


2010 ◽  
Vol 147 (6) ◽  
pp. 910-918 ◽  
Author(s):  
MANISH A. MAMTANI ◽  
POULOMI SENGUPTA

AbstractQuartzites tend to be compositionally homogeneous, and because of this, deformation related fabric elements (foliations and lineations) are poorly developed in them. This makes structural analysis of deformed quartzites challenging. The measurement of anisotropy of magnetic susceptibility (AMS) is useful for recognizing structural imprints in rocks that lack mesoscopic fabrics and the present study is carried out with an aim to demonstrate the robustness of AMS in analysing such deformation imprints in quartzites. AMS data of samples from folded quartzites located in an approximately 10 km2 area around Galudih (eastern India) are presented. Although on a regional scale, superposed deformation and ductile shearing are known from the area, the investigated quartzites do not preserve mesoscopic evidence of these large-scale features and have developed folds that plunge gently towards the SE with a vertical NW–SE-striking axial plane. The magnetic foliation recorded from AMS analysis is parallel to the axial plane, while the orientation of the magnetic lineation varies from SE through vertical to NW. This is similar to the large-scale fold axis variations recorded in various regional domains mapped over an area of about 200 km2. It is concluded that although the imprint of regional superposed deformation is not obvious on the mesoscopic scale in the quartzites around Galudih, this imprint can be detected from the magnetic fabric. The present study thus highlights the usefulness of AMS in analysing superposed folds in quartzites.


1976 ◽  
Vol 13 (1) ◽  
pp. 54-65 ◽  
Author(s):  
H. A. K. Charlesworth ◽  
C. W. Langenberg ◽  
J. Ramsden

The fold-axis is the eigenvector associated with the smallest eigenvalue of a symmetrical 3 × 3 matrix of direction cosines of poles to the folded surface, only if the fold is cylindrical. Cylindricity can be tested using either a χ2 or an F test. Sections showing the traces of macroscopic surfaces and of the axial plane may be constructed with the aid of computer plots that show the projection of each outcrop as well as the trace of the folded surface. The orientation of the axial plane can be calculated from the orientations of the fold-axis and the trace of the axial plane on a section normal to the fold-axis. These numerical procedures are illustrated by an analysis of four folds from the Rocky Mountains.


GeoArabia ◽  
1998 ◽  
Vol 3 (3) ◽  
pp. 387-398
Author(s):  
M. Atef Noweir ◽  
Abdulrahman S. Alsharhan ◽  
Mohamed A. Boukhary

ABSTRACT The Faiyah Range belongs to a group of regional ridges that formed by post-obduction folding of the Upper Cretaceous-Tertiary sedimentary rocks exposed along the western margin of the Northern Oman Mountains. The Faiyah Anticline, generally trends north-northeast to south-southwest with thrust faults striking parallel to the fold axis. The anticlinal hinge was later displaced by a dextral strike-slip fault, named here as the Faiyah Fault, into two segments. The northeastern segment includes Jebels Rumaylah, Faiyah and Mulayhah, and the southwestern segment includes Jebels Buhays and Aqabah. The anticline is interpreted to result from northeast-southwest compression during the Tertiary. In the Faiyah Range the neoautochthonous sedimentary rocks are the Maastrichtian Qahlah and Simsima formations, and the Eocene Dammam Formation. Stratigraphic evidence shows that the lower part of the Qahlah was deposited in a non-marine environment while the upper part was deposited during a marine transgression. The Simsima was deposited in a shallow-marine environment. These units unconformably overlap the allochthonous Semail Ophiolite. The microfaunal content of the so-called Muthaymimah Formation (?Tertiary), of earlier authors, indicates that it is of Maastrichtian age in the Faiyah Range. This sequence is also conformable to the Simsima and therefore it is considered to be the upper member of the Simsima in this area.


Sign in / Sign up

Export Citation Format

Share Document