scholarly journals Using hydrologic landscape classification and climatic time series to assess hydrologic vulnerability of the western U.S. to climate

2021 ◽  
Vol 25 (6) ◽  
pp. 3179-3206
Author(s):  
Chas E. Jones Jr. ◽  
Scott G. Leibowitz ◽  
Keith A. Sawicz ◽  
Randy L. Comeleo ◽  
Laurel E. Stratton ◽  
...  

Abstract. We apply the hydrologic landscape (HL) concept to assess the hydrologic vulnerability of the western United States (U.S.) to projected climate conditions. Our goal is to understand the potential impacts of hydrologic vulnerability for stakeholder-defined interests across large geographic areas. The basic assumption of the HL approach is that catchments that share similar physical and climatic characteristics are expected to have similar hydrologic characteristics. We use the hydrologic landscape vulnerability approach (HLVA) to map the HLVA index (an assessment of climate vulnerability) by integrating hydrologic landscapes into a retrospective analysis of historical data to assess variability in future climate projections and hydrology, which includes temperature, precipitation, potential evapotranspiration, snow accumulation, climatic moisture, surplus water, and seasonality of water surplus. Projections that are beyond 2 standard deviations of the historical decadal average contribute to the HLVA index for each metric. Separating vulnerability into these seven separate metrics allows stakeholders and/or water resource managers to have a more specific understanding of the potential impacts of future conditions. We also apply this approach to examine case studies. The case studies (Mt. Hood, Willamette Valley, and Napa–Sonoma Valley) are important to the ski and wine industries and illustrate how our approach might be used by specific stakeholders. The resulting vulnerability maps show that temperature and potential evapotranspiration are consistently projected to have high vulnerability indices for the western U.S. Precipitation vulnerability is not as spatially uniform as temperature. The highest-elevation areas with snow are projected to experience significant changes in snow accumulation. The seasonality vulnerability map shows that specific mountainous areas in the west are most prone to changes in seasonality, whereas many transitional terrains are moderately susceptible. This paper illustrates how HL and the HLVA can help assess climatic and hydrologic vulnerability across large spatial scales. By combining the HL concept and HLVA, resource managers could consider future climate conditions in their decisions about managing important economic and conservation resources.

2020 ◽  
Author(s):  
Chas E. Jones ◽  
Scott G. Leibowitz ◽  
Keith A. Sawicz ◽  
Randy L. Comeleo ◽  
Laurel E. Stratton ◽  
...  

Abstract. We apply the hydrologic landscapes (HL) concept to assess the hydrologic vulnerability of the western United States (U.S.) to projected climate conditions. Our goal is to understand the potential impacts for stakeholder-defined interests across large geographic areas. The basic assumption of the HL approach is that catchments that share similar physical and climatic characteristics are expected to have similar hydrologic characteristics. We map climate vulnerability by integrating the HL approach into a retrospective analysis of historical data to assess variability in future climate projections and hydrology, which includes temperature, precipitation, potential evapotranspiration, snow accumulation, climatic moisture, surplus water, and seasonality of water surplus. Projections that are not within two-standard deviations of the historical decadal average contribute to the vulnerability index for each metric. This allows stakeholders and/or water resource managers to understand the potential impacts of future conditions. In this paper, we present example assessments of hydrologic vulnerability of specific geographic locations (Sonoma Valley, Willamette Valley, and Mount Hood) that are important to the ski and wine industries to illustrate how our approach might be used by specific stakeholders. The resulting vulnerability maps show that temperature and potential evapotranspiration are consistently projected to have high vulnerability indices for the western U.S. Precipitation vulnerability is not as spatially uniform as temperature. The highest elevation areas with snow are projected to experience significant changes in snow accumulation. The seasonality vulnerability map shows that specific mountainous areas in the West are most prone to changes in seasonality, whereas many transitional terrains are moderately susceptible. This paper illustrates how the HL approach can help assess climatic and hydrologic vulnerability across large spatial scales. By combining the HL concept and climate vulnerability analyses, we provide a planning approach that could allow resource managers to consider how future climate conditions may impact important economic and conservation resources.


2020 ◽  
Vol 40 (10) ◽  
pp. 1343-1354
Author(s):  
Patrick C Murphy ◽  
John F Knowles ◽  
David J P Moore ◽  
Kevin Anchukaitis ◽  
Daniel L Potts ◽  
...  

Abstract Semiarid forests in the southwestern USA are generally restricted to mountain regions where complex terrain adds to the challenge of characterizing stand productivity. Among the heterogeneous features of these ecosystems, topography represents an important control on system-level processes including snow accumulation and melt. This basic relationship between geology and hydrology affects radiation and water balances within the forests, with implications for canopy structure and function across a range of spatial scales. In this study, we quantify the effect of topographic aspect on primary productivity by observing the response of two codominant native tree species to seasonal changes in the timing and magnitude of energy and water inputs throughout a montane headwater catchment in Arizona, USA. On average, soil moisture on north-facing aspects remained higher during the spring and early summer compared with south-facing aspects. Repeated measurements of net carbon assimilation (Anet) showed that Pinus ponderosa C. Lawson was sensitive to this difference, while Pseudotsuga menziesii (Mirb.) Franco was not. Irrespective of aspect, we observed seasonally divergent patterns at the species level where P. ponderosa maintained significantly greater Anet into the fall despite more efficient water use by P. menziesii individuals during that time. As a result, this study at the southern extent of the geographical P. menziesii distribution suggests that this species could increase water-use efficiency as a response to future warming and/or drying, but at lower rates of production relative to the more drought-adapted P. ponderosa. At the sub-landscape scale, opposing aspects served as a mesocosm of current versus anticipated climate conditions. In this way, these results also constrain the potential for changing carbon sequestration patterns from Pinus-dominated landscapes due to forecasted changes in seasonal moisture availability.


2017 ◽  
Vol 8 (4) ◽  
pp. 652-674 ◽  
Author(s):  
Mohsen Nasseri ◽  
Banafsheh Zahraie ◽  
Leila Forouhar

Abstract In this paper, two approaches to assess the impacts of climate change on streamflows have been used. In the first approach (direct), a statistical downscaling technique was utilized to predict future streamflows based on large-scale data of general circulation models (GCMs). In the second approach (indirect), GCM outputs were downscaled to produce local climate conditions which were then used as inputs to a hydrological simulation model. In this article, some data-mining methods such as model-tree, multivariate adaptive regression splines and group method of data handling were utilized for direct downscaling of streamflows. Projections of HadCM3 model for A2 and B2 SRES scenarios were also used to simulate future climate conditions. These evaluations were done over three sub-basins of Karkheh River basin in southwest Iran. To achieve a comprehensive assessment, a global uncertainty assessment method was used to evaluate the results of the models. The results indicated that despite simplifications included in the direct downscaling, this approach is accurate enough to be used for assessing climate change impacts on streamflows without computational efforts of hydrological modeling. Furthermore, comparing future climate projections, the uncertainty associated with elimination of hydrological modeling is estimated to be high.


2020 ◽  
Vol 12 (4) ◽  
pp. 877-896
Author(s):  
Corey Davis ◽  
Heather Aldridge ◽  
Ryan Boyles ◽  
Karen S. McNeal ◽  
Lindsay Maudlin ◽  
...  

AbstractWhile there is growing demand for use of climate model projections to understand the potential impacts of future climate on resources, there is a lack of effective visuals that convey the range of possible climates across spatial scales and with uncertainties that potential users need to inform their impact assessments and studies. We use usability testing including eye tracking to explore how a group of resource professionals (foresters) interpret and understand a series of graphical representations of future climate change, housed within a web-based decision support system (DSS), that address limitations identified in other tools. We find that a three-map layout effectively communicates the spread of future climate projections spatially, that location-specific information is effectively communicated if depicted both spatially on a map and temporally on a time series plot, and that model error metrics may be useful for communicating uncertainty and in demonstrating the utility of these future climate datasets.


2015 ◽  
Vol 6 (3) ◽  
pp. 472-485 ◽  
Author(s):  
Ahmad Asnaashari ◽  
Bahram Gharabaghi ◽  
Ed McBean ◽  
Ali Akbar Mahboubi

The potential effects of climate change on future water budget components and streamflow in the Mississippi River (Ontario) are assessed. Analyses of historic hydrometric data indicate an increasing trend in winter streamflows due to the rising winter air temperatures across the region over the latter half of the 20th century. These temperatures have resulted in reduced snow accumulation and earlier spring snowmelt. Projected future climate data are developed using the second generation Coupled Global Climate Model and downscaled using the change factor method for the Mississippi River watershed (Ontario). The projected future climate data are then used as input to a calibrated hydrologic model for simulation of future water balance and streamflows in this river basin. These simulations predict a gradual annual rate of change of: 0.1% increase in total precipitation; 0.2% increase in rainfall; 0.7% decrease in snowfall; 0.2% increase in potential evapotranspiration; 0.1% decrease in soil moisture; 1.4% increase in water deficit; 0.5% increase in streamflow during winter months; and 0.3% decrease in summer streamflows. Cyclic pattern analysis of the historic streamflow records suggests the existence of pronounced 3-year and 12-year cycles, providing short-term streamflow forecasting opportunities for optimum reservoir management operations during the wet-year/dry-year cycles.


2019 ◽  
Vol 20 (2) ◽  
pp. 197-215 ◽  
Author(s):  
Sebastian A. Krogh ◽  
John W. Pomeroy

Abstract The rapidly warming Arctic is experiencing permafrost degradation and shrub expansion. Future climate projections show a clear increase in mean annual temperature and increasing precipitation in the Arctic; however, the impact of these changes on hydrological cycling in Arctic headwater basins is poorly understood. This study investigates the impact of climate change, as represented by simulations using a high-resolution atmospheric model under a pseudo-global-warming configuration, and projected changes in vegetation, using a spatially distributed and physically based Arctic hydrological model, on a small headwater basin at the tundra–taiga transition in northwestern Canada. Climate projections under the RCP8.5 emission scenario show a 6.1°C warming, a 38% increase in annual precipitation, and a 19 W m−2 increase in all-wave annual irradiance over the twenty-first century. Hydrological modeling results suggest a shift in hydrological processes with maximum peak snow accumulation increasing by 70%, snow-cover duration shortening by 26 days, active layer deepening by 0.25 m, evapotranspiration increasing by 18%, and sublimation decreasing by 9%. This results in an intensification of the hydrological regime by doubling discharge volume, a 130% increase in spring runoff, and earlier and larger peak streamflow. Most hydrological changes were found to be driven by climate change; however, increasing vegetation cover and density reduced blowing snow redistribution and sublimation, and increased evaporation from intercepted rainfall. This study provides the first detailed investigation of projected changes in climate and vegetation on the hydrology of an Arctic headwater basin, and so it is expected to help inform larger-scale climate impact studies in the Arctic.


2020 ◽  
Vol 101 (3) ◽  
pp. E265-E273
Author(s):  
Fredric Lipschultz ◽  
David D. Herring ◽  
Andrea J. Ray ◽  
Jay R. Alder ◽  
LuAnn Dahlman ◽  
...  

Abstract The goal of the U.S. Climate Resilience Toolkit’s (CRT) Climate Explorer (CE) is to provide information at appropriate spatial and temporal scales to help practitioners gain insights into the risks posed by climate change. Ultimately, these insights can lead to groups of local stakeholders taking action to build their resilience to a changing climate. Using CE, decision-makers can visualize decade-by-decade changes in climate conditions in their county and the magnitude of changes projected for the end of this century under two plausible emissions pathways. They can also check how projected changes relate to user-defined thresholds that represent points at which valued assets may become stressed, damaged, or destroyed. By providing easy access to authoritative information in an elegant interface, the Climate Explorer can help communities recognize—and prepare to avoid or respond to—emerging climate hazards. Another important step in the evolution of CE builds on the purposeful alignment of the CRT with the U.S. Global Change Research Program’s (USGCRP) National Climate Assessment (NCA). By closely linking these two authoritative resources, we envision that users can easily transition from static maps and graphs within NCA reports to dynamic, interactive versions of the same data within CE and other resources within the CRT, which they can explore at higher spatial scales or customize for their own purposes. The provision of consistent climate data and information—a result of collaboration among USGCRP’s federal agencies—will assist decision-making by other governmental entities, nongovernmental organizations, businesses, and individuals.


2020 ◽  
Author(s):  
Koen De Ridder ◽  
Filip Lefebre ◽  
Eline Vanuytrecht ◽  
Julie Berckmans ◽  
Hendrik Wouters

<p>Biodiversity is increasingly under pressure from climate change, which affects the habitat suitability for species as well as the efficiency of ecosystem services. Management of these issues, for instance through ecosystem restoration or species dispersal measures, is often hindered by a lack of appropriate information about (future) climate conditions.  To address this, an operational Sectoral Information System (SIS) for the Biodiversity sector (SIS Biodiversity) is designed within the Copernicus programme Climate Change Service (C3S). This new SIS provides tailored bio-climatic indicators and applications, and delivers novel evidence regarding impacts of past, present and future climate. As such, it provides support to decision making challenges that are currently facing unmet climate data needs.<br> <br>The new climate service for SIS Biodiversity will be demonstrated, including the outline, workflow and outcomes of the use cases. The service is built upon the Copernicus Data Store platform (CDS; ), and takes into account (1) the barriers in ongoing bio-climate assessments and (2) the user requirements of diverse stakeholders (e.g. researcher institutes, local NGO’s, the International Union for Conservation of Nature and Natural Resources (IUCN),…). These have been collected during workshops and bilateral meetings in 2019. A common barrier is the lack of reliable and high-resolution information about states and dynamics of the soil, sea, ice and air for the past and the future climate. Therefore, the service provides relevant bio-climatic indicators on the basis of a wealth of available variables from the latest ERA5 reanalysis datasets and the CMIP5 global climate projections available in CDS. In order to provide information at high resolution and minimize inconsistencies between observed and modelled variables, different downscaling and bias-correction techniques are applied. A common requirement is a universal and flexible interface to the bio-climatic indicators in an easy-to-use and coherent platform that is applicable for different fauna and flora species of interest. Therefore, different applications have been developed within CDS for generating bio-climate suitability envelopes from the high-resolution indicators and to evaluate climate suitability and impacts for the species under present and future climate. Finally, the service is currently tested and refined on the basis of specific use cases. Special attention is given to their transferability to other global and topical studies, hence maximizing external user uptake throughout existing research and policy networks.</p>


2019 ◽  
Vol 42 (3) ◽  
pp. 987-1000 ◽  
Author(s):  
Dongli Fan ◽  
Honglin Zhong ◽  
Biao Hu ◽  
Zhan Tian ◽  
Laixiang Sun ◽  
...  

Abstract Chinese Medicinal Yam (CMY) has been prescribed as medicinal food for thousand years in China by Traditional Chinese Medicine (TCM) practitioners. Its medical benefits include nourishing the stomach and spleen to improve digestion, replenishing lung and kidney, etc., according to the TCM literature. As living standard rises and public health awareness improves in recent years, the potential medicinal benefits of CMY have attracted increasing attention in China. It has been found that the observed climate change in last several decades, together with the change in economic structure, has driven significant shift in the pattern of the traditional CMY planting areas. To identify suitable planting area for CMY in the near future is critical for ensuring the quality and supply quantity of CMY, guiding the layout of CMY industry, and safeguarding the sustainable development of CMY resources for public health. In this study, we first collect 30-year records of CMY varieties and their corresponding phenology and agro-meteorological observations. We then consolidate these data and use them to enrich and update the eco-physiological parameters of CMY in the agro-ecological zone (AEZ) model. The updated CMY varieties and AEZ model are validated using the historical planting area and production under observed climate conditions. After the successful validation, we use the updated AEZ model to simulate the potential yield of CMY and identify the suitable planting regions under future climate projections in China. This study shows that regions with high ecological similarity to the genuine and core producing areas of CMY mainly distribute in eastern Henan, southeastern Hebei, and western Shandong. The climate suitability of these areas will be improved due to global warming in the next 50 years, and therefore, they will continue to be the most suitable CMY planting regions.


Sign in / Sign up

Export Citation Format

Share Document