scholarly journals Modelling runoff at the plot scale taking into account rainfall partitioning by vegetation: application to stemflow of banana (<I>Musa</I> spp.) plant

2009 ◽  
Vol 6 (3) ◽  
pp. 4307-4347 ◽  
Author(s):  
J.-B. Charlier ◽  
R. Moussa ◽  
P. Cattan ◽  
Y.-M. Cabidoche ◽  
M. Voltz

Abstract. Rainfall partitioning by vegetation modifies the intensity of rainwater reaching the ground, which affects runoff generation. Incident rainfall is intercepted by the plant canopy and then redistributed into throughfall and stemflow. Rainfall intensities at the soil surface are therefore not spatially uniform, generating local variations of runoff production that are disregarded in runoff models. The aim of this paper was to model runoff at the plot scale, accounting for rainfall partitioning by vegetation in the case of plants concentrating rainwater at the plant foot and promoting stemflow. We developed a lumped modelling approach, including a stemflow function that divided the plot into two compartments: one compartment including stemflow and the relative water pathways and one compartment for the rest of the plot. This stemflow function was coupled with a production function and a transfer function to simulate a flood hydrograph using the MHYDAS model. Calibrated parameters were a "stemflow coefficient", which compartmented the plot; the saturated hydraulic conductivity (Ks), which controls infiltration and runoff; and the two parameters of the diffusive wave equation. We tested our model on a banana plot of 3000 m2 on permeable Andosol (mean Ks=75 mm h−1) under tropical rainfalls, in Guadeloupe (FWI). Runoff simulations without and with the stemflow function were performed and compared to 18 flood events from 10 to 130 mm rainfall depth. Modelling results showed that the stemflow function improved the calibration of hydrographs according to the error criteria on volume and on peakflow and to the Nash and Sutcliffe coefficient. This was particularly the case for low flows observed during residual rainfall, for which the stemflow function allowed runoff to be simulated for rainfall intensities lower than the Ks measured at the soil surface. This approach also allowed us to take into account the experimental data, without needing to calibrate the runoff volume on Ks parameter. Finally, the results suggest a rainwater redistribution module should be included in distributed runoff models at a larger scale of the catchment.

2009 ◽  
Vol 13 (11) ◽  
pp. 2151-2168 ◽  
Author(s):  
J.-B. Charlier ◽  
R. Moussa ◽  
P. Cattan ◽  
Y.-M. Cabidoche ◽  
M. Voltz

Abstract. Rainfall partitioning by vegetation modifies the intensity of rainwater reaching the ground, which affects runoff generation. Incident rainfall is intercepted by the plant canopy and then redistributed into throughfall and stemflow. Rainfall intensities at the soil surface are therefore not spatially uniform, generating local variations of runoff production that are disregarded in runoff models. The aim of this paper was to model runoff at the plot scale, accounting for rainfall partitioning by vegetation in the case of plants concentrating rainwater at the plant foot and promoting stemflow. We developed a lumped modelling approach, including a stemflow function that divided the plot into two compartments: one compartment including stemflow and the related water pathways and one compartment for the rest of the plot. This stemflow function was coupled with a production function and a transfer function to simulate a flood hydrograph using the MHYDAS model. Calibrated parameters were a "stemflow coefficient", which compartmented the plot; the saturated hydraulic conductivity (Ks), which controls infiltration and runoff; and the two parameters of the diffusive wave equation. We tested our model on a banana plot of 3000 m2 on permeable Andosol (mean Ks=75 mm h−1) under tropical rainfalls, in Guadeloupe (FWI). Runoff simulations without and with the stemflow function were performed and compared to 18 flood events from 10 to 140 rainfall mm depth. Modelling results showed that the stemflow function improved the calibration of hydrographs according to the error criteria on volume and on peakflow, to the Nash and Sutcliffe coefficient, and to the root mean square error. This was particularly the case for low flows observed during residual rainfall, for which the stemflow function allowed runoff to be simulated for rainfall intensities lower than the Ks measured at the soil surface. This approach also allowed us to take into account the experimental data, without needing to calibrate the runoff volume on Ks parameter. Finally, the results suggest a rainwater redistribution module should be included in distributed runoff models at a larger scale of the catchment.


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2324
Author(s):  
Peng Lin ◽  
Pengfei Shi ◽  
Tao Yang ◽  
Chong-Yu Xu ◽  
Zhenya Li ◽  
...  

Hydrological models for regions characterized by complex runoff generation process been suffer from a great weakness. A delicate hydrological balance triggered by prolonged wet or dry underlying condition and variable extreme rainfall makes the rainfall-runoff process difficult to simulate with traditional models. To this end, this study develops a novel vertically mixed model for complex runoff estimation that considers both the runoff generation in excess of infiltration at soil surface and that on excess of storage capacity at subsurface. Different from traditional models, the model is first coupled through a statistical approach proposed in this study, which considers the spatial heterogeneity of water transport and runoff generation. The model has the advantage of distributed model to describe spatial heterogeneity and the merits of lumped conceptual model to conveniently and accurately forecast flood. The model is tested through comparison with other four models in three catchments in China. The Nash–Sutcliffe efficiency coefficient and the ratio of qualified results increase obviously. Results show that the model performs well in simulating various floods, providing a beneficial means to simulate floods in regions with complex runoff generation process.


2019 ◽  
Author(s):  
Dayang Li ◽  
Zhongmin Liang ◽  
Yan Zhou ◽  
Binquan Li ◽  
Yupeng Fu

Abstract. Flood forecasting and simulation in semiarid regions are always poor, and a single criterion assessment provides limited information for decision making. Here, we propose a multicriterion assessment framework combining the absolute relative error, the flow partitioning and the confidence interval estimated by the Hydrologic Uncertainty Processor (HUP) to assess the most striking feature of an event-based flood–the peak flow. The physically based model MIKE SHE and three conceptual models (two models with a single runoff generation mechanism, the Xi’anjiang model (XAJ) and the Shanbei model (SBM), and one model with the mixed runoff generation mechanism, the vertically mixed runoff model (VMM)) are compared in terms of flood modeling performance in four semiarid catchments (Qiushui River, Qingjian River, Tuwei River and Kuye River) in the middle Yellow River. Our results show that VMM has a better flood estimation performance than the other models, and under the multicriterion assessment framework, the average acceptance of flood events accounts for 58 %, but when absolute relative error 20 % is used as the performance criterion, its figure is only 41 % in four semiarid catchments.


2013 ◽  
Vol 68 (12) ◽  
pp. 2718-2724 ◽  
Author(s):  
Musheng Lin ◽  
Xingwei Chen ◽  
Ying Chen ◽  
Huaxia Yao

Parameter calibration is a key and difficult issue for a hydrological model. Taking the Jinjiang Xixi watershed of south-east China as the study area, we proposed methods to improve the calibration of two very sensitive parameters, Muskingum K and initial loss, in the Hydrologic Engineering Center hydrologic modelling system (HEC-HMS) model. Twenty-three rainstorm flood events occurring from 1972 to 1977 were used to calibrate the model using a trial-and-error approach, and a relationship between initial loss and initial discharge for these flood events was established; seven rainstorm events occurring from 1978 to 1979 were used to validate the two parameters. The influence of initial loss change on different return-period floods was evaluated. A fixed Muskingum K value, which was calibrated by assuming a flow wave velocity at 3 m/s, could be used to simulate a flood hydrograph, and the empirical power-function relationship between initial loss and initial discharge made the model more applicable for flood forecasting. The influence of initial loss on peak floods was significant but not identical for different flood levels, and the change rate of peak floods caused by the same initial loss change was more remarkable when the return period increased.


2020 ◽  
Author(s):  
Ralf Merz ◽  
Larisa Tarasova ◽  
Stefano Basso

&lt;p&gt;Floods can be caused by a large variety of different processes, such as short, but intense rainfall bursts, long rainfall events, which are wetting up substantial parts of the catchment, or rain on snow cover or frozen soils. Although there is a plethora on studies analysing or modelling rainfall-runoff processes, it is still not well understood, what rainfall and runoff generation conditions are needed to generate flood runoff and how these characteristics vary between catchments. In this databased approach we decipher the ingredients of flood events occurred in 161 catchments across Germany. For each catchment rainfall-runoff events are separated from observed time series for the period 1950-2013, resulting in about 170,000 single events. A peak-over-threshold approach is used to select flood events out of these runoff events. For each event, spatially and temporally distributed rainfall and runoff generation characteristics, such as snow cover and soil moisture, as well as their interaction are derived. Then we decipher those event characteristics controlling flood event occurrence by using machine learning techniques.&lt;/p&gt;&lt;p&gt;On average, the most important event characteristic controlling flood occurrence in Germany is, as expected, event rainfall volume, followed by the overlap of rainfall and soil moisture and the extent of wet areas in the catchment (area with high soil moisture content). Rainfall intensity is another important characteristic. However, a large variability in its importance is noticeable between dryer catchments where short rainfall floods occur regularly and wetter catchments, where rainfall intensity might be less important for flood generation. To analyse the regional variability of flood ingredients, we cluster the catchments according to similarity in their flood controlling event characteristics and test how good the flood occurrence can be predicted from regionalised event characteristics. Finally, we analyse the regional variability of the flood ingredients in the light of climate and landscape catchment characteristics.&lt;/p&gt;


2017 ◽  
Vol 64 (1) ◽  
pp. 49-67 ◽  
Author(s):  
Wiesław Gądek ◽  
Beata Baziak ◽  
Tamara Tokarczyk

AbstractNonparametric hydrographs, constructed by the method suggested by Archer, are usually used for developing parametric design hydrographs. Flow changes in time are described by the UPO ERR Gamma complex function, which denotes a Gamma curve reformulated to have a Unit Peak at the Origin (abbreviated to UPO), supplemented by the Exponential Replacement Recession (ERR) curve. It may be observed, that this solution does not work in some areas of the upper Vistula and middle Odra catchments when the times of the rising limb of a hydrograph are higher than the times of the falling limb, i.e. when the skewness coefficient approximates 0.5 or higher values. Better results can be achieved with the function suggested by Strupczewski in 1964. It is a solution which uses two parameters of the flood hydrograph. The objective of the present paper is to assess the Strupczewski method by comparing it with a complex UPO ERR Gamma function for gauged cross-sections in the upper Vistula and middle Odra catchments. The assessment was carried out for 30 gauged cross-sections (15 in each river catchment). The parameters were optimized for width-hydrograph descriptors W75 and W50, designed by the Archer method, and for the skewness coefficient s. Optimization using only two width-hydrograph descriptors aims to test how the Strupczewski method works for cross-sections for which the values of width-hydrograph descriptors W75 and W50 are known. The assessment of both methods was carried out with reference to a nonparametric hydrograph constructed by the Archer method. The results of these assessments suggest that the Strupczewski method may be used not only for gauged cross-sections, but also for ungauged ones.


2010 ◽  
Vol 18 (2) ◽  
pp. 1-12
Author(s):  
K. Vrána ◽  
T. Dostál ◽  
P. Koudelka ◽  
V. David ◽  
K. Uuléřová

The effect of the conditions of a landscape on its retention capacityQuestions related to the occurrence, frequency, intensity, duration, characteristics and causes of floods have been discussed more in recent years. Two basic approaches to flood control often conflict. The first is based on the assumption of the considerable effect of a landscape's retention capacity, which can in fact prevent surface runoff generation and flood formation and can significantly transform flood wave. The second approach asserts that the retention capacity of a landscape is nearly negligible and that the only reliable flood protection can be provided by extending the technical structures of flood control measures mainly and directly on water courses. Two different approaches were applied to assess the effect of landscape conditions and revitalization measures on surface runoff and flood formation within a catchment and floodplain. The conclusion shows that the effect of landscape revitalization is very important, but mainly for low return periods of flood events, while for extreme events, the effect on landscapes and floodplains becomes less important and even negligible.


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1407
Author(s):  
Bingxing Tong ◽  
Zhijia Li ◽  
Cheng Yao ◽  
Jingfeng Wang ◽  
Yingchun Huang

Free water storage capacity, an important characteristic of land surface related to runoff process, has a significant influence on runoff generation and separation. It is thus necessary to derive reasonable spatial distribution of free water storage capacity for rainfall-runoff simulation, especially in distributed modeling. In this paper, a topographic index based approach is proposed for the derivation of free water storage capacity spatial distribution. The topographic index, which can be obtained from digital elevation model (DEM), are used to establish a functional relationship with free water storage capacity in the proposed approach. In this case, the spatial variability of free water storage capacity can be directly estimated from the characteristics of watershed topography. This approach was tested at two medium sized watersheds, including Changhua and Chenhe, with the drainage areas of 905 km2 and 1395 km2, respectively. The results show that locations with larger values of free water storage capacity generally correspond to locations with higher topographic index values, such as riparian region. The estimated spatial distribution of free water storage capacity is also used in a distributed, grid-based Xinanjiang model to simulate 10 flood events for Chenhe Watershed and 17 flood events for Changhua Watershed. Our analysis indicates that the proposed approach based on topographic index can produce reasonable spatial variability of free water storage capacity and is more suitable for flood simulation.


2012 ◽  
Vol 16 (7) ◽  
pp. 1991-2004 ◽  
Author(s):  
O. Munyaneza ◽  
J. Wenninger ◽  
S. Uhlenbrook

Abstract. Understanding of dominant runoff generation processes in the meso-scale Migina catchment (257.4 km2) in southern Rwanda was improved using analysis of hydrometric data and tracer methods. The paper examines the use of hydrochemical and isotope parameters for separating streamflow into different runoff components by investigating two flood events which occurred during the rainy season "Itumba" (March–May) over a period of 2 yr at two gauging stations. Dissolved silica (SiO2), electrical conductivity (EC), deuterium (2H), oxygen-18 (18O), major anions (Cl− and SO2−4) and major cations (Na+, K+, Mg2+ and Ca2+) were analyzed during the events. 2H, 18O, Cl− and SiO2 were finally selected to assess the different contributing sources using mass balance equations and end member mixing analysis for two- and three-component hydrograph separation models. The results obtained by applying two-component hydrograph separations using dissolved silica and chloride as tracers are generally in line with the results of three-component separations using dissolved silica and deuterium. Subsurface runoff is dominating the total discharge during flood events. More than 80% of the discharge was generated by subsurface runoff for both events. This is supported by observations of shallow groundwater responses in the catchment (depth 0.2–2 m), which show fast infiltration of rainfall water during events. Consequently, shallow groundwater contributes to subsurface stormflow and baseflow generation. This dominance of subsurface contributions is also in line with the observed low runoff coefficient values (16.7 and 44.5%) for both events. Groundwater recharge during the wet seasons leads to a perennial river system. These results are essential for better water resources planning and management in the region, which is characterized by very highly competing demands (domestic vs. agricultural vs. industrial uses).


2008 ◽  
Vol 8 (6) ◽  
pp. 1349-1357 ◽  
Author(s):  
S. Manfreda

Abstract. The present paper introduces an analytical approach for the description of the soil water balance and runoff production within a schematic river basin. The model is based on a stochastic differential equation where the rainfall is interpreted as an additive noise in the soil water balance and is assumed uniform over the basin, the basin heterogeneity is characterized by a parabolic distribution of the soil water storage capacity and the runoff production occurs for saturation excess. The model allowed to derive the probability density function of the produced surface runoff highlighting the role played by climate and physical characteristics of a basin on runoff dynamics. Finally, the model have been tested over a humid basin of Southern Italy proposing also a strategy for the parameters estimation.


Sign in / Sign up

Export Citation Format

Share Document